首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用Monte Carlo模拟方法研究了在平行板受限条件下A_(15)B_5非对称两嵌段共聚物与纳米粒子复合物的自组装行为,其中平行板对多组分嵌段A具有吸引相互作用.模拟结果表明,纳米粒子在两嵌段共聚物/纳米粒子复合物中的体积分数、嵌段共聚物不同嵌段与纳米粒子间的相互作用均对体系在平行板受限条件下的形貌结构及纳米粒子在体系中的分布有重要影响.当平行板间距一定时,未添加纳米粒子的A_(15)B_5非对称两嵌段共聚物中的A嵌段被吸附在平行板上形成层状相,而B嵌段则在平行板中形成六角堆积穿孔层状结构.加入与A嵌段不相容而与B嵌段相容的纳米粒子后,增加了纳米粒子与B嵌段的相容性,有利于保持B嵌段所形成的穿孔结构及孔洞尺寸,同时纳米粒子能够均匀地分散在B相区中.当引入的纳米粒子与A和B两嵌段均不相容时,降低纳米粒子与嵌段共聚物的不相容性同样有利于维持体系的穿孔结构.当纳米粒子与AB两嵌段共聚物间的排斥作用微弱时,即使含量较高,纳米粒子也不聚集,并且均匀分布在A相区与B相区的交界处.  相似文献   

2.
采用Monte Carlo模拟方法研究了疏水-亲水-疏水(H-P-H)型ABC三嵌段共聚物在B嵌段的选择性溶剂中的自组装行为. 模拟结果表明, 通过调节A嵌段和C嵌段的疏水性和二者之间的不相容性, 体系中可以形成多种形貌各异的胶束. 根据胶束中疏水核结构的特点, 这些胶束大体上可以被分为多核型胶束和多间隔型胶束两种类型. 通过增强疏水嵌段的疏水性或降低A嵌段和C嵌段间的不相容性, H-P-H型ABC三嵌段共聚物胶束能够发生从多核型胶束向多间隔型胶束的转变. 进一步分析胶束中聚合物的链构象等微观结构信息发现, A嵌段和C嵌段间的排斥作用和疏水作用之间存在竞争关系, 而这种竞争关系是影响体系中形成多核型胶束还是多间隔型胶束的决定性因素.  相似文献   

3.
嵌段共聚物在三维软受限条件下能够组装形成结构有序的聚合物胶束,其在催化、电子器件、光学传感等领域有广泛的应用价值,已经引起了广大科研工作者的关注。众所周知,嵌段共聚物自身性质及组装体内部结构和外部形状都会显著影响嵌段共聚物组装体性质及应用。本文简述了近年来嵌段共聚物三维软受限自组装的方法,分析了影响嵌段共聚物组装结构的内在和外在因素,内在因素主要指嵌段共聚物自身性质,包括嵌段共聚物种类、分子量及嵌段比;外在因素主要包括受限空间尺寸、界面性质、热或溶剂退火等。本文讨论了无机纳米粒子与嵌段共聚物三维软受限共组装,探讨了纳米粒子引入对组装结构影响及其在嵌段共聚物组装体中的分布及排列规律,以及组装结构的潜在应用。最后还讨论了目前嵌段共聚物三维软受限自组装存在的问题,同时对未来的发展方向进行了展望。  相似文献   

4.
采用软补丁粒子模型及相应的介观动力学模拟方法, 研究了软三嵌段两面神胶体粒子在稀溶液条件下的自组装行为. 通过合理调节补丁大小和补丁之间的吸引强度, 软三嵌段两面神胶体粒子能够自组装形成非常丰富的聚集结构, 包括线状结构、 六方柱状结构、 体心四方束状结构以及三维网络状结构. 此外, 分析了与纤维结构类似的体心四方束状结构形成的动力学机理. 模拟结果为实验上设计并制备新颖的超胶体纳米结构提供一定的理论支持.  相似文献   

5.
采用耗散粒子动力学方法模拟研究了rod-coil-rod 三嵌段共聚物在稀溶液中的聚集行为. 分别考察了rod-coil 嵌段的相互作用、溶剂性质、共聚物浓度以及coil 嵌段长度对聚集体形貌的影响. 模拟结果发现,随着rod-coil 相互排斥作用的增加,共聚物由球形转变成洋葱状、笼形和柱状结构. 随着coil 嵌段疏水性的增加,笼形转变成洋葱状和补丁状结构. 给出了聚集体形貌随共聚物浓度和coil 长度变化的相图. 当浓度较小和coil 嵌段较长时,共聚物形成笼状聚集体,反之,则有利于洋葱状结构的形成.  相似文献   

6.
采用耗散粒子动力学方法模拟研究了rod-coil-rod三嵌段共聚物在稀溶液中的聚集行为.分别考察了rod-coil嵌段的相互作用、溶剂性质、共聚物浓度以及coil嵌段长度对聚集体形貌的影响.模拟结果发现,随着rod-coil相互排斥作用的增加,共聚物由球形转变成洋葱状、笼形和柱状结构.随着coil嵌段疏水性的增加,笼形转变成洋葱状和补丁状结构.给出了聚集体形貌随共聚物浓度和coil长度变化的相图.当浓度较小和coil嵌段较长时,共聚物形成笼状聚集体,反之,则有利于洋葱状结构的形成.  相似文献   

7.
嵌段共聚物自组装及其在纳米材料制备中的应用(上)   总被引:6,自引:2,他引:6  
嵌段共聚物分子链中,嵌段间的相互热力学不相容性及化学键相连接性,使体系发生自组装,通过适当的分子及体系设计,嵌段共聚物体系能够自组装形成丰富的周期性有序微结构。本文概要地总结了嵌段共聚物体系主要的三方面自组装物理行为:本体自组装、在选择性溶剂中的缔合,及薄膜自组装,同时,介绍了这三方面的一些新的研究进展。  相似文献   

8.
综述了使用计算机模拟方法研究在本体状态下形成柱状结构的线形二嵌段和三嵌段共聚物在平行板间和纳米圆孔内的自组装结构.研究发现,嵌段共聚物体系在受限状态下自组装可以得到与本体状态下不同的纳米结构,调整受限状态的物理化学性质可以调控受限体系的相行为,从而诱导体系形成特定的结构.模拟研究还发现不同相分离强度和链结构的体系,在相同的受限状态下表现出不同的相行为.因此在制备纳米结构材料的研究中,人们要根据嵌段共聚物体系的特定性质,选择相应的受限环境,才能够实现有效的控制.  相似文献   

9.
利用布朗动力学方法研究了ACB三嵌段粒子的分级自组装过程.由第一级组装得到的结构作为第二级组装的初始构型,通过调控体系中补丁B部分的吸引强度和补丁粒子的浓度,研究了第二级组装过程中形成有序结构的影响因素.通过设计组装模型、组装规则和组装路线,得到了蜂巢状网络结构和金刚石状结构.结果表明,在较高的吸引强度和适当的浓度下,可以得到更多且更规整的蜂巢状结构;较高和较低的吸引强度和浓度都不利于金刚石状结构的形成.  相似文献   

10.
嵌段共聚物的自组装为功能性纳米材料的制备提供了一种重要途径. ABC型嵌段共聚物相比于AB型具有更大的参数空间,自组装行为也更加复杂.在实验所合成的三组分嵌段共聚物自组装体系中,已有多种复杂结构被发现,如螺旋超柱、编织图案等,但实验上比较难以直接阐明它们的形成机理.近年来,本课题组运用自洽场理论(SCFT)对ABC型嵌段共聚物自组装进行了系统的研究,聚焦探索其结构参数及拓扑结构对相行为的影响机制.本文介绍了本课题组关于“非受挫”和“受挫”两大类ABC型嵌段共聚物自组装的SCFT研究成果,揭示了一些非经典相的形成机理,并通过合理的分子设计预测了一系列新颖的有序结构.  相似文献   

11.
采用Monte Carlo模拟方法考察了AB环形对称两嵌段共聚物受限在薄膜中的自组装行为。模拟结果表明,AB环形对称两嵌段共聚物在薄膜中自组装形成的层状结构的取向依赖于薄膜表面的选择性或膜厚。当薄膜表面无选择性或具有强选择性时,体系中层状结构的取向分别为垂直和平行于薄膜表面;当薄膜表面选择性较弱时,随着膜厚的增加层状结构的取向会发生由垂直向平行于薄膜表面的转变。这些模拟结果与文献报道中线形体系十分一致。然而值得注意的是,当薄膜表面的选择性适中时,环形体系中形成了一种在线形体系中未被观察到的具有波浪形层状结构的新颖有序结构。通过对该结构相互作用焓密度与链构象的分析发现,该结构是一种稳定态结构。此外,通过对比相同参数下环形体系与线形体系的层状结构发现,环形体系层状结构的特征尺寸明显小于线形体系。上述模拟结果表明相对于与其分子量相同的线形嵌段共聚物,环形嵌段共聚物由于其特殊的几何结构能够形成新颖的或具有更小特征尺寸的微相分离结构,而控制特征尺寸,尤其是获得尽可能小的特征尺寸,对于制备具有更小纳米结构和更高集成度的微电子器件具有重要意义。  相似文献   

12.
利用耗散粒子动力学模拟方法, 研究了杂臂星型嵌段共聚物Am(Bn)2在溶液中自组装形成囊泡的行为. 主要分析了自组装过程、亲水分枝和疏水分枝的长度及分子构型对组装结构的影响. 结果表明, 杂臂星型聚合物在溶液中会自组装形成碟状胶束, 之后弯曲闭合形成囊泡. 当亲水部分的分枝较短时, 易于形成囊泡结构; 在可形成囊泡结构的条件下, 双分子层囊泡膜的厚度随分枝长度的增加而增加. 与构成相近的线型嵌段共聚物相比, 杂臂星型嵌段共聚物更易形成囊泡结构, 且形成的囊泡结构较薄.  相似文献   

13.
聚苯乙烯-b-聚氧乙烯-b-聚苯乙烯三嵌段共聚物的自组装   总被引:1,自引:0,他引:1  
小分子表面活性剂、磷脂、接枝及嵌段共聚物等两亲分子在选择性介质中能够自组装形成特定的分子聚集体 [1,2 ] .嵌段共聚物自组装的某些行为具有生物膜模拟性 ,如最近发现的嵌段共聚物自组装囊泡 [3~ 5] .诸多因素影响着嵌段共聚物在稀溶液中的自组装行为 [6] .对于 ABA型三嵌  相似文献   

14.
嵌段共聚物通过微观相分离形成的各种有序结构在纳米印刷、药物输送、太阳能电池模板制备等领域有着广泛的应用.如何实现这些有序结构的有效调控是大家普遍关心的问题.近期的实验及理论研究表明嵌段长度的多分散性对嵌段共聚物的微观相行为有着不可忽视的影响.本文综述了近年来在AB型两嵌段及ABA型三嵌段共聚物的实验及理论研究中的一些主要进展,重点介绍了基于耗散粒子动力学的模拟研究进展.并对多分散性可能带来潜在重要影响的嵌段共聚物相关体系的未来发展方向进行了展望.  相似文献   

15.
嵌段共聚物有着丰富的相行为,在本体中会发生微相分离形成球形、柱形、双连续形和层状结构.当嵌段共聚物被限制在一定的空间几何中且空间几何特征尺寸与嵌段共聚物的平衡周期相近时,自组装过程会受到强烈的影响而形成与本体不同的自组装结构.本文从实验研究方面总结了限制因素和边界条件对嵌段共聚物受限自组装过程的影响,并指出了当前存在的一些问题以及今后的发展方向.  相似文献   

16.
聚合诱导自组装(PISA)是一种在高浓度溶液中可连续大量制备纳米材料的新技术,结合计算模拟方法,研究其动力学过程可强化对PISA的认识和调控.通过耗散粒子动力学(DPD)模拟,研究了ABC三嵌段共聚物的聚合诱导自组装过程.先利用亲溶剂A链段引发B单体聚合,随着疏溶剂B链段的增长,AB二嵌段共聚物可组装并发生聚集体结构的连续转变,由球形胶束→蠕虫状胶束→层状结构→囊泡.再将C单体逐步聚合到AB共聚物上,调控C链段的亲疏溶剂性,可聚合诱导组装或解组装形成不同的ABC三嵌段共聚物聚集体.  相似文献   

17.
近年来,嵌段共聚物在受限空间中的自组装已成为高分子科学领域一个新的关注点.在受限条件下,嵌段共聚物展现出更多的可调控性,可获得复杂多样的微相分离结构.这些新颖的结构为实现嵌段共聚物更加丰富的功能奠定了材料基础.中国的学者们在嵌段共聚物受限自组装的理论模拟和实验研究方面取得了一系列重要创新成果,有力地推动了该领域的发展.本文总结和评述了中国学者在该领域的研究进展,并展望了嵌段共聚物受限自组装研究未来发展的机遇与挑战.  相似文献   

18.
刘红艳  郭泓雨  周健 《化学学报》2012,70(23):2445-2450
采用耗散粒子动力学模拟的方法研究了抗癌药物输运体系多西紫杉醇与聚乙丙交酯与聚乙二醇的共聚物(PLGA-PEG)的自组装形态, 考察了共聚物浓度、共聚物组成和药物含量等对自组装形态的影响. 模拟结果表明, 不同浓度的PLGA-PEG能够和多西紫杉醇自组装成球状、柱状、层状等结构; 一定的浓度下, 亲水的PEG嵌段将疏水的PLGA嵌段包裹起来形成核壳结构, 可用于疏水药物输运应用. 在比较低的浓度下, 不同组成的PLGA-PEG均会形成球状核壳结构, PEG嵌段较多时壳层较厚核尺寸较小, PLGA嵌段较多时核的尺寸较大但壳层较薄, 综合考虑载药量和稳定性, 模拟结果中PEG嵌段的摩尔分数为60%即PLGA40-PEG60作为载体时性能较佳. 药物的含量对自组装结构也有影响, 药物含量较小时形成球状结构, 药物含量较大时, 则会形成柱状结构. 对PLGA40-PEG60体系, 模拟结果显示药物、聚合物和水的最佳配比为5:10:90. 本工作可为共聚物载药体系的设计与开发提供参考.  相似文献   

19.
采用Monte Carlo模拟方法研究了多分散性AB两亲性两嵌段共聚物在选择性溶剂中的自组装行为.模拟结果表明,嵌段共聚物的多分散性对体系在选择性溶剂中自组装所形成的胶束形貌结构有很大影响.当AB两嵌段共聚物的多分散系数由1.0增加至1.4时,体系中自组装所形成的胶束将会发生由囊泡到片层直至球状的一系列形态转变.通过统...  相似文献   

20.
马世营  汪蓉 《高分子学报》2016,(8):1030-1041
嵌段共聚物和纳米粒子复合纳米材料具有优异的性能,在生物医药、光电材料、催化材料等领域具有很大的应用价值,已成为备受关注的研究热点.利用嵌段共聚物自组装能够形成特定形态的纳米结构聚集体,将纳米粒子选择性的分布和定位于嵌段共聚物聚集体中,可以改善纳米粒子的性能及其应用.本文综述了近年来实验上利用自组装制备嵌段共聚物-纳米粒子复合纳米材料的方法,并总结分析了影响纳米粒子在嵌段共聚物聚集体中的分布和定位的各种因素,包括纳米粒子的大小、形状及其表面化学.最后总结了嵌段共聚物-纳米粒子的自组装在理论模拟方面的研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号