首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is a continuation of earlier work [P. Degond, S. Jin, L. Mieussens, A smooth transition between kinetic and hydrodynamic equations, Journal of Computational Physics 209 (2005) 665–694] in which we presented an automatic domain decomposition method for the solution of gas dynamics problems which require a localized resolution of the kinetic scale. The basic idea is to couple the macroscopic hydrodynamics model and the microscopic kinetic model through a buffer zone in which both equations are solved. Discontinuities or sharp gradients of the solution are responsible for locally strong departures to local equilibrium which require the resolution of the kinetic model. The buffer zone is drawn around the kinetic region by introducing a cut-off function, which takes values between zero and one and which is identically zero in the fluid zone and one in the kinetic zone. In the present paper, we specifically consider the possibility of moving the kinetic region or creating new kinetic regions, by evolving the cut-off function with respect to time. We present algorithms which perform this task by taking into account indicators which characterize the non-equilibrium state of the gas. The method is shown to be highly flexible as it relies on the time evolution of the buffer cut-off function rather than on the geometric definition of a moving interface which requires remeshing, by contrast to many previous methods. Numerical examples are presented which validate the method and demonstrate its performances.  相似文献   

2.
This paper is a continuation of earlier work [P. Degond, S. Jin, L. Mieussens, A smooth transition between kinetic and hydrodynamic equations, Journal of Computational Physics 209 (2005) 665–694] in which we presented an automatic domain decomposition method for the solution of gas dynamics problems which require a localized resolution of the kinetic scale. The basic idea is to couple the macroscopic hydrodynamics model and the microscopic kinetic model through a buffer zone in which both equations are solved. Discontinuities or sharp gradients of the solution are responsible for locally strong departures to local equilibrium which require the resolution of the kinetic model. The buffer zone is drawn around the kinetic region by introducing a cut-off function, which takes values between zero and one and which is identically zero in the fluid zone and one in the kinetic zone. In the present paper, we specifically consider the possibility of moving the kinetic region or creating new kinetic regions, by evolving the cut-off function with respect to time. We present algorithms which perform this task by taking into account indicators which characterize the non-equilibrium state of the gas. The method is shown to be highly flexible as it relies on the time evolution of the buffer cut-off function rather than on the geometric definition of a moving interface which requires remeshing, by contrast to many previous methods. Numerical examples are presented which validate the method and demonstrate its performances.  相似文献   

3.
We introduce a coupled method for hydrodynamic and kinetic equations on 2-dimensional h-adaptive meshes. We adopt the Euler equations with a fast kinetic solver in the region near thermodynamical equilibrium, while use the Boltzmann-BGK equation in kinetic regions where fluids are far from equilibrium. A buffer zone is created around the kinetic regions, on which a gradually varying numerical flux is adopted. Based on the property of a continuously discretized cut-off function which describes how the flux varies, the coupling will be conservative. In order for the conservative 2-dimensional specularly reflective boundary condition to be implemented conveniently, the discrete Maxwellian is approximated by a high order continuous formula with improved accuracy on a disc instead of on a square domain. The h-adaptive method can work smoothly with a time-split numerical scheme. Through h-adaptation, the cell number is greatly reduced. This method is particularly suitable for problems with hydrodynamics breakdown on only a small part of the whole domain, so that the total efficiency of the algorithm can be greatly improved. Three numerical examples are presented to validate the proposed method and demonstrate its efficiency.  相似文献   

4.
Based on the integral form of the fluid dynamic equations, a finite volume kinetic scheme with arbitrary control volume and mesh velocity is developed. Different from the earlier unified moving mesh gas-kinetic method [C.Q. Jin, K. Xu, An unified moving grid gas-kinetic method in Eulerian space for viscous flow computation, J. Comput. Phys. 222 (2007) 155–175], the coupling of the fluid equations and geometrical conservation laws has been removed in order to make the scheme applicable for any quadrilateral or unstructured mesh rather than parallelogram in 2D case. Since a purely Lagrangian method is always associated with mesh entangling, in order to avoid computational collapsing in multidimensional flow simulation, the mesh velocity is constructed by considering both fluid velocity (Lagrangian methodology) and diffusive velocity (Regenerating Eulerian mesh function). Therefore, we obtain a generalized Arbitrary-Lagrangian–Eulerian (ALE) method by properly designing a mesh velocity instead of re-generating a new mesh after distortion. As a result, the remapping step to interpolate flow variables from old mesh to new mesh is avoided. The current method provides a general framework, which can be considered as a remapping-free ALE-type method. Since there is great freedom in choosing mesh velocity, in order to improve the accuracy and robustness of the method, the adaptive moving mesh method [H.Z. Tang, T. Tang, Adaptive mesh methods for one-and two-dimensional hyperbolic conservation laws, SIAM J. Numer. Anal. 41 (2003) 487–515] can be also used to construct a mesh velocity to concentrate mesh to regions with high flow gradients.  相似文献   

5.
Density waves analogous to second sound are studied in a gas of magnons. Quasiparticle interaction is considered for both equilibrium and non equilibrium thermodynamics. The non equilibrium theory is based on a Boltzmann equation for magnon-magnon scattering. Contrary to the total energy and magnetization, (quasi)-momentum is not strictly conserved. In the hydrodynamic regime, the transport equation is reduced to a set of two coupled equations for the magnetization and the local temperature. For low temperatures these have diffusive and propagating solutions while for high temperatures, where momentum is dissipated by Umklapp processes, the solutions are only diffusive. The magnetization response function and the corresponding spectral function are discussed for various wavenumbers and temperatures.  相似文献   

6.
In this work we present a non stationary domain decomposition algorithm for multiscale hydrodynamic-kinetic problems, in which the Knudsen number may span from equilibrium to highly rarefied regimes. Our approach is characterized by using the full Boltzmann equation for the kinetic regime, the Compressible Euler equations for equilibrium, with a buffer zone in which the BGK-ES equation is used to represent the transition between fully kinetic to equilibrium flows.In this fashion, the Boltzmann solver is used only when the collision integral is non-stiff, and the mean free path is of the same order as the mesh size needed to capture variations in macroscopic quantities. Thus, in principle, the same mesh size and time steps can be used in the whole computation. Moreover, the time step is limited only by convective terms.Since the Boltzmann solver is applied only in wholly kinetic regimes, we use the reduced noise DSMC scheme we have proposed in Part I of the present work. This ensures a smooth exchange of information across the different domains, with a natural way to construct interface numerical fluxes. Several tests comparing our hybrid scheme with full Boltzmann DSMC computations show the good agreement between the two solutions, on a wide range of Knudsen numbers.  相似文献   

7.
The set of smooth equilibrium solutions of a kinetic model for cometary flows is split into equivalence classes according to similarity transformations. For each equivalence class in the two- and three-dimensional cases a normal form is computed. Each such equilibrium solution gives rise to an explicit solution of the compressible Euler equations for monatomic gases. The set of these solutions is discussed with special emphasis on solutions containing vacuum regions.  相似文献   

8.
A new kinetic equation is developed which incorporates the desirable features of the Enskog, the Rice-Allnatt, and the Prigogine-Nicolis-Misguich kinetic theories of dense fluids. Advantages of the present theory over the latter three theories are (1) it yields the correct local equilibrium hydrodynamic equations, (2) unlike the Rice-Allnatt theory, it determines the singlet and doublet distribution functions from the same equation, and (3) unlike the Prigogine-Nicolis-Misguich theory, it predicts the kinetic and kinetic-potential transport coefficients. The kinetic equation is solved by the Chapman-Enskog method and the coefficients of shear viscosity, bulk viscosity, thermal conductivity, and self-diffusion are obtained. The predicted bulk viscosity and thermal conductivity coefficients are singular at the critical point, while the shear viscosity and self-diffusion coefficients are not.  相似文献   

9.
10.
《Physica A》2006,362(1):132-138
The lattice Boltzmann equation is commonly used to simulate fluids with isothermal equations of state in a weakly compressible limit, and intended to approximate solutions of the incompressible Navier–Stokes equations. Due to symmetry requirements there are usually more degrees of freedom in the equilibrium distributions than there are constraints imposed by the need to recover the Navier–Stokes equations in a slowly varying limit. We construct equilibria for general barotropic fluids, where pressure depends only upon density, using the two-dimensional, nine velocity (D2Q9) and one-dimensional, five velocity (D1Q5) lattices, showing that one otherwise arbitrary function in the equilibria must be chosen to suppress instability.  相似文献   

11.
We propose a new model and a solution method for two-phase compressible flows. The model involves six equations obtained from conservation principles applied to each phase, completed by a seventh equation for the evolution of the volume fraction. This equation is necessary to close the overall system. The model is valid for fluid mixtures, as well as for pure fluids. The system of partial differential equations is hyperbolic. Hyperbolicity is obtained because each phase is considered to be compressible. Two difficulties arise for the solution: one of the equations is written in non-conservative form; non-conservative terms exist in the momentum and energy equations. We propose robust and accurate discretisation of these terms. The method solves the same system at each mesh point with the same algorithm. It allows the simulation of interface problems between pure fluids as well as multiphase mixtures. Several test cases where fluids have compressible behavior are shown as well as some other test problems where one of the phases is incompressible. The method provides reliable results, is able to compute strong shock waves, and deals with complex equations of state.  相似文献   

12.
一维非线性对流占优扩散方程的变网格特征差分方法   总被引:1,自引:0,他引:1  
王同科 《计算物理》2003,20(6):493-497
针对一维非线性对流占优扩散方程,提出了一类变网格特征差分格式,该格式能够根据解的梯度变化及时对计算网格进行调整.与均匀网格格式相比,给出的变网格特征差分格式对于对流占优扩散问题有着更好的计算效果.  相似文献   

13.
Extended irreversible thermodynamics (EIT) has been used mainly to study the short-time behavior of fluids and some other systems. It has also been shown how the structure of the equations of motion constructed for the so-called relaxation variables coincides with those obtained by means of Grad's method in kinetic theory. In this work we calculate the generalized entropy from the one-particle distribution function up to 26 moments. We find that the characteristics of such entropy and the equations of motion for the relaxing variables are supported by the kinetic theory. This is not the case for the hierarchical relaxation hypothesis which is used in the applications of EIT to the generalized hydrodynamic regime.On temporary leave at the Universidad Iberoamericana, Mexico.  相似文献   

14.
We derive general kinetic and hydrodynamic models of chemotactic aggregation that describe certain features of the morphogenesis of biological colonies (like bacteria, amoebae, endothelial cells or social insects). Starting from a stochastic model defined in terms of N coupled Langevin equations, we derive a nonlinear mean-field Fokker-Planck equation governing the evolution of the distribution function of the system in phase space. By taking the successive moments of this kinetic equation and using a local thermodynamic equilibrium condition, we derive a set of hydrodynamic equations involving a damping term. In the limit of small frictions, we obtain a hyperbolic model describing the formation of network patterns (filaments) and in the limit of strong frictions we obtain a parabolic model which is a generalization of the standard Keller-Segel model describing the formation of clusters (clumps). Our approach connects and generalizes several models introduced in the chemotactic literature. We discuss the analogy between bacterial colonies and self-gravitating systems and between the chemotactic collapse and the gravitational collapse (Jeans instability). We also show that the basic equations of chemotaxis are similar to nonlinear mean-field Fokker-Planck equations so that a notion of effective generalized thermodynamics can be developed.  相似文献   

15.
A set of quantum hydrodynamic equations are derived from the moments of the electrostatic mean-field Wigner kinetic equation. No assumptions are made on the particular local equilibrium or on the statistical ensemble wave functions. Quantum diffraction effects appear explicitly only in the transport equation for the heat flux triad, which is the third-order moment of the Wigner pseudo-distribution. The general linear dispersion relation is derived, from which a quantum modified Bohm-Gross relation is recovered in the long wave-length limit. Nonlinear, traveling wave solutions are numerically found in the one-dimensional case. The results shed light on the relation between quantum kinetic theory, the Bohm-de Broglie-Madelung eikonal approach, and quantum fluid transport around given equilibrium distribution functions.  相似文献   

16.
Linearized hydrodynamic equations for spin-up and -down fluids oscillating about the Thomas-Fermi ground state are derived variationally and estimates for the lowest-lying spin waves obtained. Static solutions in an external magnetic field yield a model spin susceptibility.  相似文献   

17.
We develop in this paper a moving mesh spectral method for the phase-field model of two-phase flows with non-periodic boundary conditions. The method is based on a variational moving mesh PDE for the phase function, coupled with efficient semi-implicit treatments for advancing the mesh function, the phase function and the velocity and pressure in a decoupled manner. Ample numerical results are presented to demonstrate the accuracy and effectiveness of the moving mesh spectral method.  相似文献   

18.
We investigate the behavior of a one-dimensional diatomic fluid under a shock wave excitation. We find that the properties of the resulting shock wave are in striking contrast with those predicted by hydrodynamic and kinetic approaches; e.g., the hydrodynamic profiles relax algebraically toward their equilibrium values. Deviations from local thermodynamic equilibrium are persistent, decaying as a power law of the distance to the shock layer. Nonequipartition is observed infinitely far from the shock wave, and the velocity-distribution moments exhibit multiscaling. These results question the validity of simple hydrodynamic theories to understand collective behavior in 1D fluids.  相似文献   

19.
This second part of our study of non-LTE line transfer with convective transport of excited atoms presents self-consistent solutions of the radiative transfer equation and the kinetic equation of the excited two-level atoms, for the limiting case of no elastic velocity-changing collisions of the excited atoms. Pure Doppler broadening of the spectral line is assumed. We investigate reflecting and destroying boundaries for the excited atoms, while the boundary condition for the photons corresponds to free photon escape from the system. Our numerical procedure for solving the two coupled kinetic equations for the excited atoms and the photons is an iterative method using variable Eddington factors, and is described in detail. We present a simple model that considers the gas of excited atoms and the radiation field as two interacting fluids, which yields a straightforward interpretation of the various scale lengths encountered in the numerical results for the hydrodynamic properties (density, flux density, mean velocity) of the gas of excited atoms.  相似文献   

20.
We present a finite difference method to solve a new type of nonlocal hydrodynamic equations that arise in the theory of spatially inhomogeneous Bloch oscillations in semiconductor superlattices. The hydrodynamic equations describe the evolution of the electron density, electric field and the complex amplitude of the Bloch oscillations for the electron current density and the mean energy density. These equations contain averages over the Bloch phase which are integrals of the unknown electric field and are derived by singular perturbation methods. Among the solutions of the hydrodynamic equations, at a 70 K lattice temperature, there are spatially inhomogeneous Bloch oscillations coexisting with moving electric field domains and Gunn-type oscillations of the current. At higher temperature (300 K) only Bloch oscillations remain. These novel solutions are found for restitution coefficients in a narrow interval below their critical values and disappear for larger values. We use an efficient numerical method based on an implicit second-order finite difference scheme for both the electric field equation (of drift-diffusion type) and the parabolic equation for the complex amplitude. Double integrals appearing in the nonlocal hydrodynamic equations are calculated by means of expansions in modified Bessel functions. We use numerical simulations to ascertain the convergence of the method. If the complex amplitude equation is solved using a first order scheme for restitution coefficients near their critical values, a spurious convection arises that annihilates the complex amplitude in the part of the superlattice that is closer to the cathode. This numerical artifact disappears if the space step is appropriately reduced or we use the second-order numerical scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号