首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
各向同性薄板中横穿孔缺陷的超声兰姆波层析成像   总被引:8,自引:0,他引:8  
本文将地球物理中的跨孔层析重建技术用于兰姆波的定量无损评价。综合射线追踪与代数重建技术(ART),发展了横穿孔缺陷的超声兰姆波层析成像方法。基于Snell定律和费马原理,采用射线追踪方法寻求发射和接收换能器之间超声兰姆波的实际传播路径并计算走时,然后采用ART算法对走时数据进行速度图像重建。给出了具有人工横穿孔缺陷铝板的数值模拟和实验数据的直射线和弯曲射线重建图像。结果表明,弯曲射线ART方法比直射线ART方法重建的缺陷尺寸更接近于缺陷的真实尺寸,并且当考虑射线弯曲时,重建图像的赝象也有所降低。  相似文献   

2.
兰姆波非线性效应的实验观察   总被引:6,自引:6,他引:0  
对兰姆波非线性效应进行了实验观察。首先,对实验所采用的Ritec系统进行了介绍,尤其对实验系统的声学部分进行了详细考虑,特别是对二次谐波的时域响应进行了简洁直观的分析。根据兰姆波具有强烈非线性效应的条件,采用斜劈换能器发射和接收兰姆波。改变发射与接收斜劈换能器的间距,对一定频率范围内的兰姆波及二次谐波在固体板表面的振幅进行了测量。在基频与二倍频兰姆波相速度相等所对应的频率附近,分析了二次谐波振幅随传播距离的定量关系,从实验上证实了二次谐波在传播过程中具有积累增长效应的结论。  相似文献   

3.
薄板声-超声检测超声传播模式的实验研究   总被引:12,自引:0,他引:12  
在声-超声检测中,人们用纵波换能器在被测板材表面的某一位置向试件中发射宽带超声波,接收换能器则设置在试件同一表面的另一位置,因此,正确认识这种检测形式下的超声波传播特性是有效应用该技术的基础。本文通过实验研究证实,薄板在声-超声检测形式下激发出的超声波的主要成分是多模式的兰姆波。文中用声-超声方法在两种厚度的铝板中激发并接收到了宽带的兰姆波。  相似文献   

4.
考虑到发射和接收换能器对超声兰姆波时域二次谐波信号所带来的不可避免的影响,提出一种基于基频与二倍频兰姆波群速度失配的超声兰姆波二次谐波的时域测量方法。当基频与二倍频超声兰姆波的相速度匹配而群速度失配时,在超声兰姆波传播过程中所发生的二次谐波信号,在时域上可与源于斜劈换能器的二次谐波信号相分离。采用仅源自于基频兰姆波的时域二次谐波的积分振幅,定量描述兰姆波二次谐波的发生效率。以铝板中传播的兰姆波为例,给出了时域二次谐波的具体测量过程。本文提出的测量方法放宽了超声兰姆波二次谐波的测量条件,且扣除了换能器对二次谐波信号所带来的影响,所测得的二次谐波信号完全来自于基频兰姆波时域信号的二次谐波发生效应。   相似文献   

5.
该文基于PVDF压电薄膜对梳状换能器进行设计制作,并将该换能器应用于接收非线性兰姆波信号实验研究。首先通过输出矢量和方法分析PVDF梳状换能器的工作特性,然后将设计制作的PVDF梳状换能器应用于铝板中非线性兰姆波信号的接收,并与传统压电陶瓷换能器经斜劈接收的非线性兰姆波信号进行比较分析。实验结果表明,两种换能器所接收到的信号幅值随传播距离的变化趋势相近,线性增长的积累效应表征结果相似,且PVDF梳状换能器可以对基波和二次谐波信号同时响应。除此之外,PVDF梳状换能器用于接收非线性兰姆波信号更加稳定。因此,PVDF梳状换能器有望应用于复杂构件的在线检测与监测研究。  相似文献   

6.
基于声偶极辐射模型提出磁感应磁声层析成像理论来解决点声源理论所不能解释的边界信号和反相振动问题,理论分析了洛伦茨力引起的一维组织振动和自由空间的三维声偶极辐射,推导了磁声激发、磁声衍射传播和换能器磁声波形接收的解析公式.对二层柱状组织模型进行的数值模拟和实验测量结果证明声偶极传播的指向性会使磁声信号在不同传播方向上产生衰减,接收到的磁声波形在声压突变处产生反映电阻抗分布边界信息的脉冲串,重构的层析图像显示不同电阻抗组织的外形和尺寸.本研究为磁感应磁声层析成像技术在医学成像中组织电阻抗分布的重建提供了理论基础.  相似文献   

7.
张海燕  杨杰  范国鹏  朱文发  柴晓冬 《物理学报》2017,66(21):214301-214301
应用频率域逆时偏移方法实现各向同性和各向异性板中缺陷的兰姆波成像.由于缺陷引起的多模态散射信号会在重建图像中形成伪像,根据基本导波模式振动对称性的差别进行了模式分离预处理.基于多元阵列超声技术,开展了铝板和复合板内缺陷频率域逆时偏移超声成像方法的数值仿真研究.首先,建立有限元模型,采用环形传感器数值采集由缺陷引起的兰姆波散射信号,然后,将采集到的多模式散射信号进行模式分离处理,再将模式分离后的兰姆波散射信号经时间反转后并在相应的接收器处重新激励,在频域中运用格林函数反向传播兰姆波散射信号,获取监测区域的声场信息,与正向传播声场进行互相关,重建缺陷图像.首先对铝板中单缺陷以及复合材料板中相邻的两个相同缺陷进行数值仿真,对比有无模式分离处理的缺陷逆时偏移成像效果,体现出模式分离的重要性.在此基础上,采用逆时偏移方法对复合板材内位置邻近、深度不同的双缺陷进行识别.数值结果表明,模式分离预处理后的缺陷重建图像能够有效去除多模式干扰产生的伪像.文中提出的成像方法对各向同性板和各向异性板内缺陷的检测和成像具有很好的发展潜力,可以准确地探测多个缺陷的形状、尺寸和深度.  相似文献   

8.
兰姆波非线性效应的实验观察(Ⅱ)   总被引:1,自引:4,他引:1  
基于Ritec-SNAP系统对固体板中传播的兰姆波的非线性效应进行了实验观察。根据导波的模式展开分析方法和兰姆波的频散曲线,简述了兰姆波的积累二次谐波发生条件。采用一定倾角的斜劈换能器在固体板表面激发和接收兰姆波的基波和二次谐波时域信号,阐述了兰姆波的基波、二次谐波时域脉冲包络的积分振幅的物理意义,在固体板表面分别测量了不同传播距离的兰姆波的基波、二次谐波的幅频曲线。在兰姆波具有非线性效应的频率值附近,分析了兰姆波的二次谐波振幅随传播距离的变化关系。实验结果进一步证明了兰姆波在一定条件下具有强烈的非线性效应,其二次谐波表现出随传播距离积累增长的性质。  相似文献   

9.
在利用二次谐波进行非线性声参量B/A层析成像中,发射换能器的声场特性,尤其是在近场区域的特性对成像结果的定性及定量分析极其重要。本文从理论及实验上分析了圆形平面活塞换能器在传播介质中产生的二次谐波声场,就其对非线性声参量成像的影响进行了分析和讨论.研究结果有助于在非线性声参量成像中降低重建误差,提高分辨灵敏度.  相似文献   

10.
介绍铝筒内贴壁声源激发的声场的实验结果。铝筒放在水中,发射和接收换能器位于铝筒的内壁上。通过改变发射和接收换能器的相对位置,得到不同的接收波形。实验结果表明接收信号包括直达波、筒壁反射波、筒壁模式波和环绕筒壁传播的面波的贡献。  相似文献   

11.
Guided wave helical ultrasonic tomography of pipes   总被引:1,自引:0,他引:1  
Ultrasonic guided waves have been used for a wide variety of ultrasonic inspection techniques. We describe here a new variation called helical ultrasound tomography (HUT) that uses guided ultrasonic waves along with tomographic reconstruction algorithms that have been developed by seismologists for what they call "cross borehole" tomography. In HUT, the Lamb-like guided waves travel the various helical criss-cross paths between two parallel circumferential transducer arrays instead of the planar criss-cross seismic paths between two boreholes. Although the measurement itself is fairly complicated, the output of the tomographic reconstruction is a readily interpretable map of a quantity of interest such as pipe wall thickness. In this paper we demonstrate HUT via laboratory scans on steel pipe segments into which controlled thinnings have been introduced.  相似文献   

12.
Ultrasonic Lamb wave diffraction tomography.   总被引:7,自引:0,他引:7  
Ultrasonic guided waves, Lamb waves, allow large sections of aircraft structures to be rapidly inspected. Unlike conventional ultrasonic C-scan imaging that requires access to the whole inspected area, tomographic algorithms work with data collected over the perimeter. Because the velocity of Lamb waves depends on thickness the travel times of the fundamental modes can be converted into a thickness map of inspected region. Lamb waves cannot penetrate through holes and other strongly scattering defects and the assumption of straight wave paths, essential for many tomographic algorithms, fails. Diffraction tomography is a way to incorporate scattering effects into tomographic algorithms in order to improve image quality and resolution. This work describes the iterative reconstruction procedure developed for Lamb wave tomography and allowing for ray bending correction for imaging of moderately scattering objects.  相似文献   

13.
Most investigators emphasize the importance of detecting the reflected signal from the defect to determine if the pipe wall has any damage and to predict the damage location. However, often the small signal from the defect is hidden behind the other arriving wave modes and signal noise. To overcome the difficulties associated with the identification of the small defect signal in the time history plots, in this paper the time history is analyzed well after the arrival of the first defect signal, and after different wave modes have propagated multiple times through the pipe. It is shown that the defective pipe can be clearly identified by analyzing these late arriving diffuse ultrasonic signals. Multiple reflections and scattering of the propagating wave modes by the defect and pipe ends do not hamper the defect detection capability; on the contrary, it apparently stabilizes the signal and makes it easier to distinguish the defective pipe from the defect-free pipe. This paper also highlights difficulties associated with the interpretation of the recorded time histories due to mode conversion by the defect. The design of electro-magnetic acoustic transducers used to generate and receive the guided waves in the pipe is briefly described in the paper.  相似文献   

14.
Li J  Rose JL 《Ultrasonics》2006,44(1):35-45
The propagation of non-axisymmetric guided waves in larger diameter pipes is studied in this paper by treating the guided waves as corresponding Lamb waves in an unwrapped plate. This approximation leads to a simpler method for calculating the phase velocities of hollow cylinder guided waves, which reveals a beam focusing nature of non-axisymmetric guided waves generated by a partial source loading. The acoustic fields in a pipe generated by a partial-loading source includes axisymmetric longitudinal modes as well as non-axisymmetric flexural modes. The circumferential distribution of the total acoustic field, also referred as an angular profile, diverges circumferentially while guided waves propagate with dependence on such factors as mode, frequency, cylinder size, propagation distance, etc. Exact prediction of the angular profile of the total field can only be realized by numerical calculations. In particular cases, however, when the wall thickness is far less than the cylinder diameter and the wavelength is smaller than or comparable to the pipe wall thickness, the acoustic field can be analyzed based on the characteristics of Lamb waves that travel along a periodic unwrapped plate. Based on this assumption, a simplified model is derived to calculate the phase velocities of non-axisymmetric flexural mode guided waves. The model is then applied to discussions on some particular characteristics of guided-wave angular profiles generated by a source loading. Some features of flexural modes, such as cutoff frequency values are predicted with the simpler model. The relationship between the angular profiles and other factors such as frequency, propagation distance, and cylinder size is obtained and presented in simple equations. The angular profile rate of change with respect to propagation distance is investigated. In particular, our simplified model for non-axisymmetric guided waves predicts that the wave beam will converge to its original circumferential shape after the wave propagates for a certain distance. A concept of "natural focal point" is introduced and a simple equation is derived to compute the 1st natural focal distance of non-axisymmetric guided waves. The applicable range of the simplified equation is provided. Industrial pipes meet the requirement of wall thickness being far less than the pipe diameter. The approximate analytical algorithms presented in this paper provides a convenient method enabling quick acoustic field analysis on large-diameter industrial pipes for NDE applications.  相似文献   

15.
Propagation phenomena of wideband guided waves in a bended pipe   总被引:1,自引:0,他引:1  
Nishino H  Yoshida K  Cho H  Takemoto M 《Ultrasonics》2006,44(Z1):e1139-e1143
Ultrasonic guided waves in pipes have been anticipated as a rapid screening technique for pipe inspection because of their long-range propagation due to low energy leakage. In this paper, the propagation phenomena of guided waves in a bended pipe were investigated using a wideband laser ultrasonic system. The laser ultrasonic system, together with wavelet transformation, is a powerful tool for observing the dispersive phenomena intrinsic to guided waves. Bended stainless steel (SUS304) pipes with 6-mm outer diameter and 1-mm wall thickness were used in the experiments. The bending angles of the pipes were set to 0 degrees (straight pipe), 10 degrees, 30 degrees, 60 degrees and 90 degrees. The radius of the bend was 12.5 mm in all the pipes. A Q-switched Nd:YAG laser was employed to generate the guided waves. The generated guided waves were detected with a heterodyne interferometer. The obtained time-domain signals and their wavelet coefficients indicated the following two conclusions: (1) The amplitude of the F(1,1) mode converted from the L(0,1) mode increased with the increase of the bending angle. (2) Mode conversions from the L(0,1) to F(1,1) modes and vice versa were clearly observed in the low-frequency range up to around 200 kHz.  相似文献   

16.
Cheong YM  Lee DH  Jung HK 《Ultrasonics》2004,42(1-9):883-888
The dispersion curves for the feeder pipes in PHWR nuclear power plants were determined. The wave modes used for the detection of notches in the feeder pipe were confirmed as F(m,2) and/or L(0,1) by an analysis of short time Fourier transformation (STFT). The axial notches in the straight pipe were not detectable, but an axial notch in a bent pipe was detected with the mode at the frequency of 500 kHz. Initial F(m,2) and/or L(0,1) modes contains a circumferential displacement and might be converted to certain complicated modes in the bent region, which is sensitive to the axial notch. The circumferential guided wave technique was also applied for quantitative evaluation of the axial notches. The waves generated by a rocking motion of the transducer along the circumferential direction were estimated as the circumferential guided waves after a review of the acquired data and the dispersion curves.  相似文献   

17.
For the efficient long-range nondestructive structural health inspection of pipes, guided waves have become widely used. Among the various guided wave modes, the torsional wave is most preferred since its first branch is nondispersive. Our objective in this work is to develop a new magnetostrictive transducer configuration to transmit and receive torsional waves in cylindrical waveguides. The conventional magnetostrictive transducer for the generation and measurement of torsional waves consists of solenoid coils and a nickel strip bonded circumferentially to test pipes. The strip must be premagnetized by a permanent magnet before actual measurements. Because of the premagnetization, the transducer is not suitable for the long-term on-line monitoring of pipes buried underground. To avoid the cumbersome premagnetization and to improve the transduction efficiency, we propose a new transducer configuration using several pieces of nickel strips installed at 45 degrees with respect to the pipe axis. If a static bias magnetic field is also applied, the transducer output can be substantially increased. Several experiments were conducted to study the performance of the proposed transducer configuration. The proposed transducer configuration was also applied for damage detection in an aluminum pipe.  相似文献   

18.
A. Singh 《Ultrasonics》1983,21(6):270-274
Refracted shear waves in extruded stainless steel pipes were found to change their velocity and direction (beam skewing) as they propagated through the pipe thickness. These variations in refracted angles and velocities result in flaw location errors during ultrasonic examination. Two techniques, one using refracted shear waves in pitch-catch mode and the other refracted longitudinal waves in pulse-echo mode, are discussed as to their feasibility in determining the flaw location accurately in these pipes. The result of the work was that a two-scan approach using refracted shear waves in pulse-echo for flaw detection and refracted longitudinal waves in pulse-echo for flaw location was recommended.  相似文献   

19.
This paper describes the use of ultrasonic guided waves for identifying the mass loading due to underwater limpet mines on ship hulls. The Dynamic Wavelet Fingerprint Technique (DFWT) is used to render the guided wave mode information in two-dimensional binary images because the waveform features of interest are too subtle to identify in time domain. The use of wavelets allows both time and scale features from the original signals to be retained, and image processing can be used to automatically extract features that correspond to the arrival times of the guided wave modes. For further understanding of how the guided wave modes propagate through the real structures, a parallel processing, 3D elastic wave simulation is developed using the finite integration technique (EFIT). This full field, technique models situations that are too complex for analytical solutions, such as built up 3D structures. The simulations have produced informative visualizations of the guided wave modes in the structures as well as mimicking directly the output from sensors placed in the simulation space for direct comparison to experiments. Results from both drydock and in-water experiments with dummy mines are also shown.  相似文献   

20.
Guided wave phased array focusing has shown many advantages in long-range pipeline inspection, such as, longer inspection distance, greater wave penetration power and higher detection resolution. Viscoelastic coatings applied to a large percentage of pipes for protection purposes created some challenges in terms of focusing feasibility and inspection ability. Previous studies were all based on bare pipe models. In this work, guided wave phased array focusing in viscoelastic coated pipes is studied for the first time. Work was carried out with both numerical and experimental methods. A three-dimensional finite element model was developed for quantitatively and systematically modeling guided waves in pipes with different viscoelastic materials. A method of transforming measured coating properties to finite element method inputs was created in order to create a physically based model of guided waves in coated pipes. Guided wave focusing possibilities in viscoelastic coated pipes and the effects from coatings were comprehensively studied afterwards. A comparison of focusing and nonfocusing inspections was also studied quantitatively in coated pipe showing that focusing increased the wave energy and consequently the inspection ability tremendously. This study provides an important base line and guidance for guided wave propagation and focusing in a real field pipeline under various coating and environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号