共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A generalized multibaker map with periodic boundary conditions is shown to model boundary-driven transport, when the driving is applied by a perturbation of the dynamics localized in a macroscopically small region. In this case there are sustained density gradients in the steady state. A non-uniform stationary temperature profile can be maintained by incorporating a heat source into the dynamics, which deviates from the one of a bulk system only in a (macroscopically small) localized region such that a heat (or entropy) flux can enter an attached thermostat only in that region. For these settings the relation between the average phase-space contraction, the entropy flux to the thermostat and irreversible entropy production is clarified for stationary and non-stationary states. In addition, thermoelectric cross effects are described by a multibaker chain consisting of two parts with different transport properties, modeling a junction between two metals. 相似文献
3.
Spin-dependent thermoelectric effect and spin battery mechanism in triple quantum dots with Rashba spin-orbital interaction 下载免费PDF全文
We have studied spin-dependent thermoelectric transport through parallel triple quantum dots with Rashba spinorbital interaction(RSOI) embedded in an Aharonov-Bohm interferometer connected symmetrically to leads using nonequilibrium Green's function method in the linear response regime.Under the appropriate configuration of magnetic flux phase and RSOI phase,the spin figure of merit can be enhanced and is even larger than the charge figure of merit.In particular,the charge and spin thermopowers as functions of both the magnetic flux phase and the RSOI phase present quadruple-peak structures in the contour graphs.For some specific configuration of the two phases,the device can provide a mechanism that converts heat into a spin voltage when the charge thermopower vanishes while the spin thermopower is not zero,which is useful in realizing the thermal spin battery and inducing a pure spin current in the device. 相似文献
4.
We report the temperature dependence of the spin pumping effect for Y3Fe5O12 (YIG, 0.9 μm)/NiO (tNiO)/W (6 nm) (tNiO = 0 nm, 1 nm, 2 nm, and 10 nm) heterostructures. All samples exhibit a strong temperature-dependent inverse spin Hall effect (ISHE) signal Ic and sensitivity to the NiO layer thickness. We observe a dramatic decrease of Ic with inserting thin NiO layer between YIG and W layers indicating that the inserting of NiO layer significantly suppresses the spin transport from YIG to W. In contrast to the noticeable enhancement in YIG/NiO (tNiO ≈ 1-2 nm)/Pt, the suppression of spin transport may be closely related to the specific interface-dependent spin scattering, spin memory loss, and spin conductance at the NiO/W interface. Besides, the Ic of YIG/NiO/W exhibits a maximum near the TN of the AF NiO layer because the spins are transported dominantly by incoherent thermal magnons. 相似文献
5.
We present a comprehensive view and details of calculations on
Aharonov-Anandan phase for the charged particles in the
external electric and magnetic fields for a nonadiabatic
process. We derive, with consideration of a spin-orbit
interaction and Zeemann Splitting, the persistent currents as a
response to an Aharonov-Casher topological interference effect
in one-dimensional mesoscopic ring.
We also establish a connection to Berry adiabatic phase with
deduced dynamical-nature dependence in the nonadiabatic
process. The second quantization representation has also been
employed in exhibition of persistent currents in the many-body
case. 相似文献
6.
磁子是自旋波量子化的准粒子。磁子具有在绝缘磁性材料中无热耗散、低阻尼、长距离传输自旋的优势,避免了因电荷流动而产生焦耳热,可以克服日益显著的器件发热问题,因此磁子器件在低功耗信息存储与计算领域具有潜在应用前景。文章首先介绍了自旋波和磁子的概念,磁子具有的优势和研究价值;然后总结了磁子在铁磁和反铁磁绝缘体中输运以及新型磁子器件方面的最新研究结果;最后详细介绍了室温下实现磁子转矩驱动磁矩翻转的最新研究工作。这些工作对发展磁子学,实现低功耗、高速磁子型器件及应用具有较为重要的现实意义。 相似文献
7.
The origin of spin current in YIG/nonmagnetic metal multilayers at ferromagnetic resonance 下载免费PDF全文
Spin pumping in yttrium-iron-garnet(YIG)/nonmagnetic-metal(NM) layer systems under ferromagnetic resonance(FMR) conditions is a popular method of generating spin current in the NM layer.A good understanding of the spin current source is essential in extracting spin Hall angle of the NM and in potential spintronics applications.It is widely believed that spin current is pumped from precessing YIG magnetization into NM layer.Here,by combining microwave absorption and DC-voltage measurements on thin YIG/Pt and YIG/NM_1/NM_2(NM_1 =Cu or Al,NM_2 =Pt or Ta),we unambiguously showed that spin current in NM,instead of from the precessing YIG magnetization,came from the magnetized NM surface(in contact with thin YIG),either due to the magnetic proximity effect(MPE) or from the inevitable diffused Fe ions from YIG to NM.This conclusion is reached through analyzing the FMR microwave absorption peaks with the DC-voltage peak from the inverse spin Hall effect(ISHE).The voltage signal is attributed to the magnetized NM surface,hardly observed in the conventional FMR experiments,and was greatly amplified when the electrical detection circuit was switched on. 相似文献
8.
9.
Han ZouYi Ji 《Journal of magnetism and magnetic materials》2011,323(20):2448-2452
The spin-transfer effect has been achieved in nanoscale metallic nonlocal spin valves. A magnetic domain (∼70×150 nm2) in an extended wire can be switched by a pure spin current between 4.5 and 200 K. The dipolar coupling between the magnetic spin injector (F1) and spin detector (F2), the surface anisotropy of the thin F2 layer, and the thermal instability of F2 generates complex switching characteristics. Analysis of the results allows for detailed understanding of magnetic configurations during the current-sweep and the field-sweep measurements. The critical current (Ic) for spin-transfer switching gradually decreases as the temperature increases. The Ic+ for the transition from parallel (P) state to antiparallel (AP) state decreases faster than the Ic‐ for the transition from AP to P due to the dipolar coupling. Above 200 K, the dipolar coupling and the thermal instability prevents a stable P state in the absence of an external field. 相似文献
10.
Spin current and its heat effect in a multichannel quantum wire with Rashba spinben orbit coupling 下载免费PDF全文
Using the perturbation method, we theoretically study the spin current and its heat effect in a multichannel quantum wire with Rashba spin—orbit coupling. The heat generated by the spin current is calculated. With the increase of the width of the quantum wire, the spin current and the heat generated both exhibit period oscillations with equal amplitudes. When the quantum-channel number is doubled, the oscillation periods of the spin current and of the heat generated both decrease by a factor of 2. For the spin current js,xy, the amplitude increases with the decrease of the quantum channel; while the amplitude of the spin current js,yx remains the same. Therefore we conclude that the effect of the quantum-channel number on the spin current js,xy is greater than that on the spin current js,yx. The strength of the Rashba spin—orbit coupling is tunable by the gate voltage, and the gate voltage can be varied experimentally, which implies a new method of detecting the spin current. In addition, we can control the amplitude and the oscillation period of the spin current by controlling the number of the quantum channels. All these characteristics of the spin current will be very important for detecting and controlling the spin current, and especially for designing new spintronic devices in the future. 相似文献
11.
Based on the formalism of Keldysh's nonequilibrium Green function, we establish a two momenta spinor Boltzmann equation for longitudinal scalar distribution function and transverse vector distribution function. The longitudinal charge currents, transverse spin currents and the continuity equations satisfied by them are then studied, it indicates that both the charge currents and spin currents decay oscillately along with position, which is due to the momenta integral over the Fermi surface. We also compare our charge currents and spin currents with the corresponding results of one momentum spinor Boltzmann equation, the differences are obvious. 相似文献
12.
WANG Zheng-Chuan 《理论物理通讯》2012,58(6):909-914
Based on the formalism of Keldysh's nonequilibrium Green function, we establish a two momenta spinor Boltzmann equation for longitudinal scalar distribution function and transverse vector distribution function. The longitudinal charge currents, transverse spin currents and the continuity equations satisfied by them are then studied, it indicates that both the charge currents and spin currents decay oscillately along with position, which is due to the momenta integral over the Fermi surface. We also compare our charge currents and spin currents with the corresponding results of one momentum spinor Boltzmann equation, the differences are obvious. 相似文献
13.
从自旋扩散方程和欧姆定律出发研究了铁磁层到有机半导体的自旋注入,得到了系统的电流自旋极化率。有机半导体中的载流子为自旋极化子和不带自旋的双极化子,极化子比率在有机半导体内随输运距离变化。通过计算发现匹配的铁磁和有机半导体电导率有利于自旋注入;通过调节界面电阻自旋相关性,电流自旋极化率可获得很大程度提高;极化子比率衰减速率对有机半导体电流自旋极化率具有非常重要的影响。 相似文献
14.
The specific history of collisionless drift waves is marked by focusing upon current‐driven, shear‐modified, and electron‐temperature‐gradient modes. Studies of current‐driven collisionless drift waves started in 1977 using the Innsbruck Q machine and was continued over 30 years until 2009 with topics such as plasma heating by drift waves in fusion‐oriented confinement and space/astrophysical plasmas. Superposition of perpendicular flow velocity shear on parallel shear intensively modifies the drift wave characteristics through the variation of its azimuthal structure, where the parallel‐shear driven instability is suppressed for strong perpendicular shears, while hybrid‐ion velocity shear cause unexpected stabilization of the parallel‐shear‐modified drift wave. An electron temperature gradient can be formed easily by control of thermionic electron superimposed on ECR plasma, and is found to excite low‐frequency fluctuation in the range of drift waves (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
15.
We theoretically investigate the thermoelectric properties of a three-terminal double-dot interferometer with Rashba spin-orbit interaction. It is found that with some temperature distributions a thermal spin current can even be produced without the help of magnetic flux and by tuning the spin interference effect in the system, a pure spin or fully spin-polarized current can be driven by temperature differences. For the cases that two of the terminals are held at the same temperature, the charge (spin) thermopower and the charge (spin) figure of merit are defined and calculated in the linear response regime. With some choices of the system parameters the calculated spin and charge thermopowers are of the same order of magnitude and the charge figure of merit can exceed 1. 相似文献
16.
The Ising approximation of the Heisenberg model in a strong magnetic field, with two, three and six spin exchange interactions is studied on a kagome chain. The kagome chain can be considered as an approximation of the third layer of 3He absorbed on the surface of graphite (kagome lattice). By using dynamical approach we have found one- and multi-dimensional mappings (recursion relations) for the partition function. The magnetization diagrams are plotted and they show that the kagome chain is separating into four sublattices with different magnetizations. Magnetization curves of two sublattices exhibit plateaus at zero and 2/3 of the saturation field. The maximal Lyapunov exponent for multi-dimensional mapping is considered and it is shown that near the magnetization plateaus the maximal Lyapunov exponent also exhibits plateaus. 相似文献
17.
Spin current and its heat effect in a multichannel quantum wire with Rashba spin-orbit coupling 下载免费PDF全文
Using the perturbation method,we theoretically study the spin current and its heat effect in a multichannel quantum wire with Rashba spin-orbit coupling.The heat generated by the spin current is calculated.With the increase of the width of the quantum wire,the spin current and the heat generated both exhibit period oscillations with equal amplitudes.When the quantum-channel number is doubled,the oscillation periods of the spin current and of the heat generated both decrease by a factor of 2.For the spin current j s,xy,the amplitude increases with the decrease of the quantum channel;while the amplitude of the spin current j s,yx remains the same.Therefore we conclude that the effect of the quantum-channel number on the spin current j s,xy is greater than that on the spin current j s,yx.The strength of the Rashba spin-orbit coupling is tunable by the gate voltage,and the gate voltage can be varied experimentally,which implies a new method of detecting the spin current.In addition,we can control the amplitude and the oscillation period of the spin current by controlling the number of the quantum channels.All these characteristics of the spin current will be very important for detecting and controlling the spin current,and especially for designing new spintronic devices in the future. 相似文献
18.
The effects of electric and magnetic fields on the current spin polarization and magnetoresistance in a ferromagnetic/organic semiconductor/ferromagnetic(FM/OSC/FM) system 下载免费PDF全文
From experimental results of spin polarized injection and transport in organic semiconductors(OSCs),we theoretically study the current spin polarization and magnetoresistance under an electric and a magnetic field in a ferromagnetic/organic semiconductor/ferromagnetic(FM/OSC/FM) sandwich structure according to the spin drift-diffusion theory and Ohm’s law.From the calculations,it is found that the interfacial current spin polarization is enhanced by several orders of magnitude through tuning the magnetic and electric fields by taking into account the specific characteristics of OSC.Furthermore,the effects of the electric and magnetic fields on the magnetoresistance are also discussed in the sandwich structure. 相似文献
19.
Panayiotis Nikolaou Nicholas Whiting Neil A. Eschmann Kathleen E. Chaffee Boyd M. Goodson Michael J. Barlow 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2009,197(2):249-254
Volume holographic gratings (VHGs) can be exploited to narrow the spectral output of high-power laser-diode arrays (LDAs) by nearly an order of magnitude, permitting more efficient generation of laser-polarized noble gases for various applications. A 3-fold improvement in 129Xe nuclear spin polarization, PXe, (compared to a conventional LDA) was achieved with the VHG-LDA’s center wavelength tuned to a wing of the Rb D1 line. Additionally, an anomalous dependence of PXe on the xenon density within the OP cell is reported—including high PXe values (>10%) at high xenon partial pressures (1000 torr). 相似文献