首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In this paper, an improved singular boundary method (SBM), viewed as one kind of modified method of fundamental solution (MFS), is firstly applied for the numerical analysis of two-dimensional (2D) Stokes flow problems. The key issue of the SBM is the determination of the origin intensity factor used to remove the singularity of the fundamental solution and its derivatives. The new contribution of this study is that the origin intensity factors for the velocity, traction and pressure are derived, and based on that, the SBM formulations for 2D Stokes flow problems are presented. Several examples are provided to verify the correctness and robustness of the presented method. The numerical results clearly demonstrate the potentials of the present SBM for solving 2D Stokes flow problems.  相似文献   

2.
This paper proposes the singular boundary method (SBM) in conjunction with Burton and Miller?s formulation for acoustic radiation and scattering. The SBM is a strong-form collocation boundary discretization technique using the singular fundamental solutions, which is mathematically simple, easy-to-program, meshless and introduces the concept of source intensity factors (SIFs) to eliminate the singularities of the fundamental solutions. Therefore, it avoids singular numerical integrals in the boundary element method (BEM) and circumvents the troublesome placement of the fictitious boundary in the method of fundamental solutions (MFS). In the present method, we derive the SIFs of exterior Helmholtz equation by means of the SIFs of exterior Laplace equation owing to the same order of singularities between the Laplace and Helmholtz fundamental solutions. In conjunction with the Burton–Miller formulation, the SBM enhances the quality of the solution, particularly in the vicinity of the corresponding interior eigenfrequencies. Numerical illustrations demonstrate efficiency and accuracy of the present scheme on some benchmark examples under 2D and 3D unbounded domains in comparison with the analytical solutions, the boundary element solutions and Dirichlet-to-Neumann finite element solutions.  相似文献   

3.
The singular boundary method (SBM) is a novel boundary-type meshless method based on the fundamental solution of the given governing equation. The SBM employs the origin intensity factors to circumvent the singularities resulting from the fundamental solutions. In this paper, we investigate the acoustic problems with boundary singularities using the SBM. This is achieved by combining the SBM with the singularity subtraction techniques where the solution is decomposed into the singular solution and the regular solution. The singular solution is derived analytically which satisfies the governing equation and the corresponding boundary conditions containing the singularities. Then the regular solution is obtained by the SBM. Numerical examples show the excellent performance of the proposed technique.  相似文献   

4.
The method of fundamental solutions (MFS) is a meshless method for the solution of boundary value problems and has recently been proposed as a simple and efficient method for the solution of Stokes flow problems. The MFS approximates the solution by an expansion of fundamental solutions whose singularities are located outside the flow domain. Typically, the source points (i.e. the singularities of the fundamental solutions) are confined to a smooth source layer embracing the flow domain. This monolayer implementation of the MFS (monolayer MFS) depends strongly on the location of the user-defined source points: On the one hand, increasing the distance of the source points from the boundary tends to increase the convergence rate. On the other hand, this may limit the achievable accuracy. This often results in an unfavorable compromise between the convergence rate and the achievable accuracy of the MFS. The idea behind the present work is that a multilayer implementation of the MFS (multilayer MFS) can improve the robustness of the MFS by efficiently resolving different scales of the solution by source layers at different distances from the boundary. We propose a block greedy-QR algorithm (BGQRa) which exploits this property in a multilevel fashion. The proposed multilayer MFS is much more robust than the monolayer MFS and can compute Stokes flows on general two- and three-dimensional domains. It converges rapidly and yields high levels of accuracy by combining the properties of distant and close source points. The block algorithm alleviates the overhead of multiple source layers and allows the multilayer MFS to outperform the monolayer MFS.  相似文献   

5.
Time-harmonic exterior acoustic problems are solved by using a singular meshless method in this paper. It is well known that the source points cannot be located on the real boundary, when the method of fundamental solutions (MFS) is used due to the singularity of the adopted kernel functions. Hence, if the source points are right on the boundary the diagonal terms of the influence matrices cannot be derived. Herein we present an approach to obtain the diagonal terms of the influence matrices of the MFS for the numerical treatment of exterior acoustics. By using the regularization technique to regularize the singularity and hypersingularity of the proposed kernel functions, the source points can be located on the real boundary and therefore the diagonal terms of influence matrices are determined. We also maintain the prominent features of the MFS, that it is free from mesh, singularity, and numerical integration. The normal derivative of the fundamental solution of the Helmholtz equation is composed of a two-point function, which is one of the radial basis functions. The solution of the problem is expressed in terms of a double-layer potential representation on the physical boundary based on the potential theory. The solutions of three selected examples are used to compare with the results of the exact solution, conventional MFS, boundary element method, and Dirichlet-to-Neumann finite element method. Good numerical performance is demonstrated by close agreement with other solutions.  相似文献   

6.
In this paper, the method of fundamental solutions (MFS) is employed for determining an unknown portion of the boundary from the Cauchy data specified on parts of the boundary. We propose a new numerical method with adaptive placement of source points in the MFS to solve the inverse boundary determination problem. Since the MFS source points placement here is not trivial due to the unknown boundary, we employ an adaptive technique to choose a sub-optimal arrangement of source points on various fictitious boundaries. Afterwards, the standard Tikhonov regularization method is used to solve ill-conditional matrix equation, while the regularization parameter is chosen by the L-curve criterion. The numerical studies of both open and closed fictitious boundaries are considered. It is shown that the proposed method is effective and stable even for data with relatively high noise levels.  相似文献   

7.
This paper presents three boundary meshless methods for solving problems of steady-state and transient heat conduction in nonlinear functionally graded materials (FGMs). The three methods are, respectively, the method of fundamental solution (MFS), the boundary knot method (BKM), and the collocation Trefftz method (CTM) in conjunction with Kirchhoff transformation and various variable transformations. In the analysis, Laplace transform technique is employed to handle the time variable in transient heat conduction problem and the Stehfest numerical Laplace inversion is applied to retrieve the corresponding time-dependent solutions. The proposed MFS, BKM and CTM are mathematically simple, easy-to-programming, meshless, highly accurate and integration-free. Three numerical examples of steady state and transient heat conduction in nonlinear FGMs are considered, and the results are compared with those from meshless local boundary integral equation method (LBIEM) and analytical solutions to demonstrate the efficiency of the present schemes.  相似文献   

8.
The method of fundamental solutions (MFS) is an efficient meshless method for solving boundary value problems in an exterior unbounded domain. The numerical solution obtained by the MFS is accurate, while the corresponding matrix equation is ill-conditioned. A modified MFS (MMFS) with the proper basis functions is proposed by the introduction of the modified Trefftz method (MTM). The concrete expressions of the corresponding condition numbers are given in mathematical forms and the solvability by these methods is mathematically proven. Thereby, the optimal parameter minimizing the condition number is also mathematically given. Numerical experiments show that the condition numbers of the matrices corresponding to the MTM and the MMFS are reduced and that the numerical solution by the MMFS is more accurate than the one by the conventional method.  相似文献   

9.
传统基本解法在二维大规模模型的声场求解过程中,系统方程形成和求解的计算量正比于自由度N的二次方O(N2)和三次方O(N3),求解效率低;为此,引入快速多极子算法并采用广义极小残差法迭代求解,提出一种用于二维声场预测的快速多极基本解法。对无限长圆柱体及二维类车体辐射模型的仿真结果表明,当N为3000时,分别采用快速多极基本解法与传统基本解法求解所需的时间比值约为百分之四,且N越大比值越小;最终实现系统方程的形成和求解的计算量降低到正比于自由度O(N),提高了对二维大规模模型声场预测计算效率。   相似文献   

10.
The mixed boundary value problem of the Laplace equation is considered. The method of fundamental solutions (MFS) approximates the exact solution to the Laplace equation by a linear combination of independent fundamental solutions with different source points. The accuracy of the numerical solution depends on the distribution of source points. In this paper, a weighted greedy QR decomposition (GQRD) is proposed to choose significant source points by introducing a weighting parameter. An index called an average degree of approximation is defined to show the efficiency of the proposed method. From numerical experiments, it is concluded that the numerical solution tends to be more accurate when the average degree of approximation is larger, and that the proposed method can yield more accurate solutions with a less number of source points than the conventional GQRD.  相似文献   

11.
One of the main difficulties in the application of the method of fundamental solutions (MFS) is the determination of the position of the pseudo-boundary on which are placed the singularities in terms of which the approximation is expressed. In this work, we propose a simple practical algorithm for determining an estimate of the pseudo-boundary which yields the most accurate MFS approximation when the method is applied to certain boundary value problems. Several numerical examples are provided.  相似文献   

12.
We propose a new moving pseudo-boundary method of fundamental solutions (MFS) for the determination of the boundary of a three-dimensional void (rigid inclusion or cavity) within a conducting homogeneous host medium from overdetermined Cauchy data on the accessible exterior boundary. The algorithm for imaging the interior of the medium also makes use of radial spherical parametrization of the unknown star-shaped void and its centre in three dimensions. We also include the contraction and dilation factors in selecting the fictitious surfaces where the MFS sources are to be positioned in the set of unknowns in the resulting regularized nonlinear least-squares minimization. The feasibility of this new method is illustrated in several numerical examples.  相似文献   

13.
A numerical scheme based on the method of fundamental solutions (MFS) is proposed for the solution of 2D and 3D Stokes equations. The fundamental solutions of the Stokes equations, Stokeslets, are adopted as the sources to obtain flow field solutions. The present method is validated through other numerical schemes for lid-driven flows in a square cavity and a cubic cavity. Test results obtained for a rectangular cavity with wave-shaped bottom indicate that the MFS is computationally efficient than the finite element method (FEM) in dealing with irregular shaped domain. The paper also discusses the effects of number of source points and their locations on the numerical accuracy.  相似文献   

14.
This study investigates the applicability of the singular boundary method (SBM), a recent developed meshless boundary collocation method, for the analysis of two-dimensional (2D) thin structural problems. The troublesome nearly-singular kernels, which are crucial in the applications of SBM to thin shapes, are dealt with efficiently by using a non-linear transformation technique. Promising SBM results with only a small number of boundary nodes are obtained for thin structures with the thickness-to-length ratio is as small as 1E-9, which is sufficient for modeling most thin layered coating systems as used in smart materials and micro-electro-mechanical systems. The advantages, disadvantages and potential applications of the proposed method, as compared with the finite element (FEM) and boundary element methods (BEM), are also discussed.  相似文献   

15.
A meshless method based on the method of fundamental solutions (MFS) is proposed to solve the time-dependent partial differential equations with variable coefficients. The proposed method combines the time discretization and the one-stage MFS for spatial discretization. In contrast to the traditional two-stage process, the one-stage MFS approach is capable of solving a broad spectrum of partial differential equations. The numerical implementation is simple since both closed-form approximate particular solution and fundamental solution are easier to find than the traditional approach. The numerical results show that the one-stage approach is robust and stable.  相似文献   

16.
This paper presents a variational formulation which treats initial value problems and boundary problems in a unified manner. The basic ingredients of this theory are (1) adjoint variable and (2) unconstrained variations. It is an extension of the finite element unconstrained variational formulation used previously in solving several non-conservative stability problems. The technique which makes this extension possible is described. This formulation thus enables one to adapt such numerical techniques as the finite element method, which has had great success and popularity for solution of boundary value problems, for solutions of initial value problems as well. These formulations are given here for a forced vibration problem, a heat (mass) transfer problem and a wave propagation problem. Numerical calculations in conjunction with finite elements for two specific examples are obtained and compared with known exact solutions.  相似文献   

17.
一类各项异性半线性椭圆方程自然边界元与有限元耦合法   总被引:1,自引:0,他引:1  
吴正朋  余德浩 《计算物理》2004,21(6):477-483
将冯康和余德浩提出的自然边界归化方法用于研究一类半线性椭圆方程外区域问题,提出一种自然边界元与有限元的耦合算法、针对某一类半线性椭圆方程,应用变分原理,研究其弱解性及Galerkin逼近,得到有限元解的误差估计及收敛阶O(h^n),最后给出相应数值例子。  相似文献   

18.
In this paper, we investigate the method of fundamental solutions (MFS) for solving exterior Helmholtz problems with high wave-number in axisymmetric domains. Since the coefficient matrix in the linear system resulting from the MFS approximation has a block circulant structure, it can be solved by the matrix decomposition algorithm and fast Fourier transform for the fast computation of large-scale problems and meanwhile saving computer memory space. Several numerical examples are provided to demonstrate its applicability and efficacy in two and three dimensional domains.  相似文献   

19.
We present the direct formulation of the two-dimensional boundary element method (BEM) for time-harmonic dynamic problems in solids of general anisotropy. We split the fundamental solution, obtained by Radon transform, into static singular and dynamics regular parts. We evaluate the boundary integrals for the static singular part analytically and those for the dynamic regular part numerically over the unit circle.We apply the developed BEM to eigenvalue analysis. We determine eigenvalues of full non-symmetric complex-valued matrices, depending non-linearly on the frequency, by first reducing them to the generalized linear eigenvalue problem and then applying the QZ algorithm. We test the performance of the QZ algorithm thoroughly in comparison with the FEM solution. The proposed BEM is not only a strong candidate to replace the FEM for industrial eigenvalue problems, but it is also applicable to a wider class of two-dimensional time-harmonic problems.  相似文献   

20.
This paper presents a different approach to solve the inverse acoustic problem. This problem is an "ill-posed" problem since the solution is very sensitive to measurement precision. A classical way to solve this problem consists in inversing a propagation operator which relates structure quantities (acoustic pressures or gradients) to near-field quantities (acoustic pressures or gradients). This can be achieved by using near-field acoustical holography (NAH) in separable coordinate systems. In order to overcome this limitation, the inverse boundary element method (IBEM) can be implemented to recover all acoustic quantities in a three-dimensional space and on an arbitrary three-dimensional source surface. In this paper, the data completion method (DCM) is developed: the acoustic gradients and pressures are known on a surface surrounding the source, but are unknown on its structure. The solution is given by the resolution of the Helmholtz formulation applied on the empty domain between the two boundaries made by the measurements quantities and the structure of the source. The conventional method applies directly the integral formulation for the empty domain. Another way of solving this Helmholtz formulation can be achieved by splitting it in two well-posed subproblems in a Steklov-Poincare?'s formulation. The data completion method allows one to solve the problem with acoustic perturbations due to sources on the exterior domain, or due to a confined domain, without altering the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号