首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Physica A》2006,363(2):198-210
A subdynamic based kinetic equation (SKE) for quantum information density (QID) is presented and using this is shown that the Liouville equation, Master equation and Fokker–Planck equation for QID all share the same formalism as the density operator. This allows one to directly use QID for studying quantum communication and to construct a quantum Gaussian channel. The channel is described by a quantum Fokker–Planck equation, which permits harmonic oscillator encoded information to transmit quantum signals with quantum parallelism. The quantum dynamical mutual information for this channel is also calculated.  相似文献   

2.
A method for constructing a canonical nonequilibrium ensemble for systems in which correlations decay exponentially has recently been proposed by Coveney and Penrose. In this paper, we show that the method is equivalent to the subdynamics formalism, developed by Prigogine and others, when the dimension of the subdynamic kinetic subspace is finite. The comparison between the two approaches helps to clarify the nature of the various operators used in the Brussels formalism. We discuss further the relationship between these two approaches, with particular reference to a simple discrete-time dynamical system, based on the baker's transformation, which we call the baker's urn.  相似文献   

3.
4.
The maximum entropy formalism developed by Jaynes determines the relevant ensemble in nonequilibrium statistical mechanics by maximising the entropy functional subject to the constraints imposed by the available information. We present an alternative derivation of the relevant ensemble based on the Kullback–Leibler divergence from equilibrium. If the equilibrium ensemble is already known, then calculation of the relevant ensemble is considerably simplified. The constraints must be chosen with care in order to avoid contradictions between the two alternative derivations. The relative entropy functional measures how much a distribution departs from equilibrium. Therefore, it provides a distinct approach to the calculation of statistical ensembles that might be applicable to situations in which the formalism presented by Jaynes performs poorly (such as non-ergodic dynamical systems).  相似文献   

5.
The ability to characterise and control matter far away from equilibrium is a frontier challenge facing modern science. In this article, we sketch out a heuristic structure for thinking about the different ways in which non-equilibrium phenomena can impact molecular reaction dynamics. Our analytical schema includes three different regimes, organised according to increasing dynamical resolution: at the lowest resolution, we have conformer phase space, at an intermediate resolution, we have energy space; and at the highest resolution, we have mode space. Within each regime, we discuss practical definitions of non-equilibrium phenomena, mostly in terms of the corresponding relaxation timescales. Using this analytical framework, we discuss some recent non-equilibrium reaction dynamics studies spanning isolated small-molecule ensembles, gas-phase ensembles and solution-phase ensembles. This includes new results that provide insight into how non-equilibrium phenomena impact the solution-phase alkene–hydroboration reaction. We emphasise that interesting non-equilibrium dynamical phenomena often occur when the relaxation timescales characterising each regime are similar. In closing, we reflect on outstanding challenges and future research directions to guide our understanding of how non-equilibrium phenomena impact reaction dynamics.  相似文献   

6.
The postulational basis of classical thermodynamics has been expanded to incorporate equilibrium fluctuations. The main additional elements of the proposed thermodynamic theory are the concept of quasi-equilibrium states, a definition of non-equilibrium entropy, a fundamental equation of state in the entropy representation, and a fluctuation postulate describing the probability distribution of macroscopic parameters of an isolated system. Although these elements introduce a statistical component that does not exist in classical thermodynamics, the logical structure of the theory is different from that of statistical mechanics and represents an expanded version of thermodynamics. Based on this theory, we present a regular procedure for calculations of equilibrium fluctuations of extensive parameters, intensive parameters and densities in systems with any number of fluctuating parameters. The proposed fluctuation formalism is demonstrated by four applications: (1) derivation of the complete set of fluctuation relations for a simple fluid in three different ensembles; (2) fluctuations in finite-reservoir systems interpolating between the canonical and micro-canonical ensembles; (3) derivation of fluctuation relations for excess properties of grain boundaries in binary solid solutions, and (4) derivation of the grain boundary width distribution for pre-melted grain boundaries in alloys. The last two applications offer an efficient fluctuation-based approach to calculations of interface excess properties and extraction of the disjoining potential in pre-melted grain boundaries. Possible future extensions of the theory are outlined.  相似文献   

7.
In this paper an alternative approach to statistical mechanics based on the maximuminformation entropy principle (MaxEnt) is examined, specifically its close relation withthe Gibbs method of ensembles. It is shown that the MaxEnt formalism is the logicalextension of the Gibbs formalism of equilibrium statistical mechanics that is entirelyindependent of the frequentist interpretation of probabilities only as factual (i.e.experimentally verifiable) properties of the real world. Furthermore, we show that,consistently with the law of large numbers, the relative frequencies of the ensemble ofsystems prepared under identical conditions (i.e. identical constraints) actuallycorrespond to the MaxEnt probabilites in the limit of a large number of systems in theensemble. This result implies that the probabilities in statistical mechanics can beinterpreted, independently of the frequency interpretation, on the basis of the maximuminformation entropy principle.  相似文献   

8.
9.
Classical field theory simulations have been essential for our understanding of non-equilibrium phenomena in particle physics. In this talk we discuss the possible extension of the bosonic classical field theory simulations to include fermions. In principle we use the inhomogeneous mean field approximation as introduced by Aarts and Smit. But in practice we turn from their deterministic technique to a stochastic approach. We represent the fermion field as an ensemble of pairs of spinor fields, dubbed male and female. These c-number fields solve the classical Dirac equation. Our improved algorithm enables the extension of the originally 1+1 dimensional analyses and is suitable for large-scale inhomogeneous settings, like defect networks.  相似文献   

10.
In this paper the physical aspects of the statistical theory of the energy levels of complex physical systems and their relation to the mathematical theory of random matrices are discussed. After a preliminary introduction we summarize the symmetry properties of physical systems. Different kinds of ensembles are then discussed. This includes the Gaussian, orthogonal, and unitary ensembles. The problem of eigenvalue-eigenvector distributions of the Gaussian ensemble is then discussed, followed by a discussion on the distribution of the widths. In the appendices we discuss the symplectic group and quaternions, and the Gaussian ensemble in detail.  相似文献   

11.
A statistical relaxation phenomenon is studied for a general class of dispersive wave equations of nonlinear Schrödinger-type which govern non-integrable, non-singular dynamics. In a bounded domain the solutions of these equations have been shown numerically to tend in the long-time limit toward a Gibbsian statistical equilibrium state consisting of a ground-state solitary wave on the large scales and Gaussian fluctuations on the small scales. The main result of the paper is a large deviation principle that expresses this concentration phenomenon precisely in the relevant continuum limit. The large deviation principle pertains to a process governed by a Gibbs ensemble that is canonical in energy and microcanonical in particle number. Some supporting Monte-Carlo simulations of these ensembles are also included to show the dependence of the concentration phenomenon on the properties of the dispersive wave equation, especially the high frequency growth of the dispersion relation. The large deviation principle for the process governed by the Gibbs ensemble is based on a large deviation principle for Gaussian processes, for which two independent proofs are given.This research was supported in part by grants from the Department of Energy (DE-FG02-99ER25376) and from the National Science Foundation (NSF-DMS-0202309)This research was partially supported by a Mathematical Sciences Postdoctoral Research Fellowship from the National Science Foundation.This research was supported in part by grants from the Department of Energy (DE-FG02-99ER25376) and from the National Science Foundation (NSF-DMS-0207064).  相似文献   

12.
杨晓丽  王斌容  胡海云 《物理学报》2018,67(18):180501-180501
微动现象广泛存在于工程结构中,近年来越来越受到科研工作者的重视.为了对微动磨损进行深入研究,本文根据微动摩擦系统中摩擦副间的特点,针对微动磨损过程,提出不对称双势阱模型,建立了其中粒子的运动方程;利用非平衡统计思想建立了理论模型,得到了计算磨损率的新方法.以金属材料Mg和Fe组成的摩擦副系统为例进行了计算分析,得出磨损率随磨损时间和势阱宽度的变化,进一步分析了载荷正压力变化对磨损率的影响.计算分析结果表明,在其他条件均不变的情况下,材料磨损率随磨损时间的增大而减小,且随着摩擦副系统中势阱宽度和载荷正压力的减小,磨损率也呈减小趋势.最后,通过与试验结果比较,验证了该理论模型的适用性.  相似文献   

13.
《Physics letters. A》2006,359(6):712-717
In the theory of Bose-condensed systems, there exists the well known problem, the Hohenberg–Martin dilemma of conserving versus gapless approximations. This dilemma is analysed and it is shown that it arises because of the internal inconsistency of the standard grand ensemble, as applied to Bose systems with broken global gauge symmetry. A solution of the problem is proposed, based on the notion of representative statistical ensembles, taking into account all constraints imposed on the system. A general approach for constructing representative ensembles is formulated. Applying a representative ensemble to Bose-condensed systems results in a completely self-consistent theory, both conserving and gapless in any approximation.  相似文献   

14.
Emergence refers to the existence or formation of collective behaviors in complex systems. Here,we develop a theoretical framework based on the eigen microstate theory to analyze the emerging phenomena and dynamic evolution of complex system. In this framework, the statistical ensemble composed of M microstates of a complex system with N agents is defined by the normalized N × M matrix A, whose columns represent microstates and order of row is consist with the time. The ensemble matrix A can be decomposed as ■, where r= min(N,M), eigenvalue σIbehaves as the probability amplitude of the eigen microstate U_I so that ■ and U_I evolves following V_I. In a disorder complex system, there is no dominant eigenvalue and eigen microstate. When a probability amplitude σIbecomes finite in the thermodynamic limit, there is a condensation of the eigen microstate UIin analogy to the Bose–Einstein condensation of Bose gases. This indicates the emergence of U_I and a phase transition in complex system. Our framework has been applied successfully to equilibrium threedimensional Ising model, climate system and stock markets. We anticipate that our eigen microstate method can be used to study non-equilibrium complex systems with unknown orderparameters, such as phase transitions of collective motion and tipping points in climate systems and ecosystems.  相似文献   

15.
This paper investigates theoretically the influence of magnetization on fatigue life by using non-equilibrium statistical theory of fatigue fracture for metals. The fatigue microcrack growth rate is obtained from the dynamic equation of microcrack growth, where the influence of magnetization is described by an additional term in the potential energy of microcrack. The statistical value of fatigue life of metal under magnetic field is derived, which is expressed in terms of magnetic field and macrophysical as well as microphysical quantities. The fatigue life of AISI 4140 steel in static magnetic field from this theory is basically consistent with the experimental data.  相似文献   

16.
17.
Common ground to recent studies exploiting relations between dynamical systems and nonequilibrium statistical mechanics is, so we argue, the standard Gibbs formalism applied on the level of space-time histories. The assumptions (chaoticity principle) underlying the Gallavotti–Cohen fluctuation theorem make it possible, using symbolic dynamics, to employ the theory of one-dimensional lattice spin systems. The Kurchan and Lebowitz–Spohn analysis of this fluctuation theorem for stochastic dynamics can be restated on the level of the space-time measure which is a Gibbs measure for an interaction determined by the transition probabilities. In this note we understand the fluctuation theorem as a Gibbs property, as it follows from the very definition of Gibbs state. We give a local version of the fluctuation theorem in the Gibbsian context and we derive from this a version also for some class of spatially extended stochastic dynamics.  相似文献   

18.
19.
We review and further develop a mathematical framework for non-equilibrium quantum statistical mechanics recently proposed in refs. 1–7. In the algebraic formalism of quantum statistical mechanics we introduce notions of non-equilibrium steady states, entropy production and heat fluxes, and study their properties. Our basic paradigm is a model of a small (finite) quantum system coupled to several independent thermal reservoirs. We exhibit examples of such systems which have strictly positive entropy production.  相似文献   

20.
We consider an ensemble of self-dual matrices with arbitrary complex entries. This ensemble is closely related to a previously defined ensemble of anti-symmetric matrices with arbitrary complex entries. We study the two-level correlation functions numerically. Although no evidence of non-monotonicity is found in the real space correlation function, a definite shoulder is found. On the analytical side, we discuss the relationship between this ensemble and the β=4 two-dimensional one-component plasma, and also argue that this ensemble, combined with other ensembles, exhausts the possible universality classes in non-hermitian random matrix theory. This argument is based on combining the method of hermitization of Feinberg and Zee with Zirnbauer's classification of ensembles in terms of symmetric spaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号