首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
We explore the existence of homomorphisms between outer automorphism groups of free groups Out(F n ) → Out(F m ). We prove that if n > 8 is even and n ≠ m ≤ 2n, or n is odd and n ≠ m ≤ 2n ? 2, then all such homomorphisms have finite image; in fact they factor through det : \({{\rm Out}(F_n) \to \mathbb{Z}/2}\) . In contrast, if mr n (n ? 1) + 1 with r coprime to (n ? 1), then there exists an embedding \({{\rm Out}(F_n) \hookrightarrow {\rm Out}(F_m)}\) . In order to prove this last statement, we determine when the action of Out(F n ) by homotopy equivalences on a graph of genus n can be lifted to an action on a normal covering with abelian Galois group.  相似文献   

2.
In this article, the authors establish conditions for the extinction of solutions, in finite time, of the fast diffusion equation \({u_t=\Delta u^m+a\int_\Omega u^p(y,t)\,{d}y,\ 0 < m < 1,}\) in a bounded domain \({\Omega\subset R^N}\) with N > 2. More precisely speaking, it is shown that if p > m, any solution with small initial data vanishes in finite time, and if p < m, the maximal solution is positive in Ω for all t > 0. For the critical case p = m, whether the solutions vanish in finite time or not depends on the value of , where \({\mu=\int_{\Omega}\varphi(x)\,{d}x}\) and \({\varphi}\) is the unique positive solution of the elliptic problem \({-\Delta\varphi(x)=1,\ x\in \Omega; \varphi(x)=0,\ x\in\partial\Omega}\) .  相似文献   

3.
A graph G on n vertices is said to be (km)-pancyclic if every set of k vertices in G is contained in a cycle of length r for each integer r in the set \(\{ m, m + 1, \ldots , n \}\). This property, which generalizes the notion of a vertex pancyclic graph, was defined by Faudree et al. in (Graphs Combin 20:291–310, 2004). The notion of (km)-pancyclicity provides one way to measure the prevalence of cycles in a graph. Broersma and Veldman showed in (Contemporary methods in graph theory, BI-Wiss.-Verlag, Mannheim, Wien, Zürich, pp 181–194, 1990) that any 2-connected claw-free \(P_5\)-free graph must be hamiltonian. In fact, every non-hamiltonian cycle in such a graph is either extendable or very dense. We show that any 2-connected claw-free \(P_5\)-free graph is (k, 3k)-pancyclic for each integer \(k \ge 2\). We also show that such a graph is (1, 5)-pancyclic. Examples are provided which show that these results are best possible. Each example we provide represents an infinite family of graphs.  相似文献   

4.
In this paper we study the spectral properties of (mC)-isometric operators. In particular, if \(T\in \mathcal{{L(H)}}\) is (mC)-isometric operators, then the power of (mC)-isometric operators is also (mC)-isometric operators. Moreover, if \(T^{*}\) has the single-valued extension property, then T has the single-valued extension property. Finally, we investigate conditions for (mC)-isometric operators to be (1, C)-isometric operators.  相似文献   

5.
We consider a particular case of the Fleet Quickest Routing Problem (FQRP) on a grid graph of m × n nodes that are placed in m levels and n columns. Starting nodes are placed at the first (bottom) level, and nodes of arrival are placed at the mth level. A feasible solution of FQRP consists in n Manhattan paths, one for each vehicle, such that capacity constraints are respected. We establish m*, i.e. the number of levels that ensures the existence of a solution to FQRP in any possible permutation of n destinations. In particular, m* is the minimum number of levels sufficient to solve any instance of FQRP involving n vehicles, when they move in the ways that the literature has until now assumed. Existing algorithms give solutions that require, for some values of n, more levels than m*. For this reason, we provide algorithm CaR, which gives a solution in a graph m* × n, as a minor contribution.  相似文献   

6.
A graph G is vertex pancyclic if for each vertex \({v \in V(G)}\) , and for each integer k with 3 ≤ k ≤ |V(G)|, G has a k-cycle C k such that \({v \in V(C_k)}\) . Let s ≥ 0 be an integer. If the removal of at most s vertices in G results in a vertex pancyclic graph, we say G is an s-vertex pancyclic graph. Let G be a simple connected graph that is not a path, cycle or K 1,3. Let l(G) = max{m : G has a divalent path of length m that is not both of length 2 and in a K 3}, where a divalent path in G is a path whose interval vertices have degree two in G. The s-vertex pancyclic index of G, written vp s (G), is the least nonnegative integer m such that L m (G) is s-vertex pancyclic. We show that for a given integer s ≥ 0,
$vp_s(G)\le \left\{\begin{array}{l@{\quad}l}\qquad\quad\quad\,\,\,\,\,\,\, l(G)+s+1: \quad {\rm if} \,\, 0 \le s \le 4 \\ l(G)+\lceil {\rm log}_2(s-2) \rceil+4: \quad {\rm if} \,\, s \ge 5 \end{array}\right.$
And we improve the bound for essentially 3-edge-connected graphs. The lower bound and whether the upper bound is sharp are also discussed.
  相似文献   

7.
Let G be a finite group. The prime graph Γ(G) of G is defined as follows. The vertices of Γ(G) are the primes dividing the order of G and two distinct vertices p and p′ are joined by an edge if there is an element in G of order pp′. We denote by k(Γ(G)) the number of isomorphism classes of finite groups H satisfying Γ(G) = Γ(H). Given a natural number r, a finite group G is called r-recognizable by prime graph if k(Γ(G)) =  r. In Shen et al. (Sib. Math. J. 51(2):244–254, 2010), it is proved that if p is an odd prime, then B p (3) is recognizable by element orders. In this paper as the main result, we show that if G is a finite group such that Γ(G) = Γ(B p (3)), where p > 3 is an odd prime, then \({G\cong B_p(3)}\) or C p (3). Also if Γ(G) = Γ(B 3(3)), then \({G\cong B_3(3), C_3(3), D_4(3)}\), or \({G/O_2(G)\cong {\rm Aut}(^2B_2(8))}\). As a corollary, the main result of the above paper is obtained.  相似文献   

8.
The kth power of a cycle C is the graph obtained from C by joining every pair of vertices with distance at most k on C. The second power of a cycle is called a square cycle. Pósa conjectured that every graph with minimum degree at least 2n/3 contains a hamiltonian square cycle. Later, Seymour proposed a more general conjecture that if G is a graph with minimum degree at least (kn)/(k + 1), then G contains the kth power of a hamiltonian cycle. Here we prove an Ore-type version of Pósa’s conjecture that if G is a graph in which deg(u) + deg(v) ≥ 4n/3 ? 1/3 for all non-adjacent vertices u and v, then for sufficiently large n, G contains a hamiltonian square cycle unless its minimum degree is exactly n/3 + 2 or n/3 + 5/3. A consequence of this result is an Ore-type analogue of a theorem of Aigner and Brandt.  相似文献   

9.
Let G be a finite group. The degree(vertex) graph Γ(G) attached to G is a character degree graph.Its vertices are the degrees of the nonlinear irreducible complex characters of G, and different vertices m, n are adjacent if the greatest common divisor(m, n) 1. In this paper, we classify all graphs with four vertices that occur as Γ(G) for nonsolvable groups G.  相似文献   

10.
A graph G is free (ab)-choosable if for any vertex v with b colors assigned and for any list of colors of size a associated with each vertex \(u\ne v\), the coloring can be completed by choosing for u a subset of b colors such that adjacent vertices are colored with disjoint color sets. In this note, a necessary and sufficient condition for a cycle to be free (ab)-choosable is given. As a corollary, we obtain almost optimal results about the free (ab)-choosability of outerplanar graphs.  相似文献   

11.
A random graph is said to obey the (monadic) zero–one k-law if, for any property expressed by a first-order formula (a second-order monadic formula) with a quantifier depth of at most k, the probability of the graph having this property tends to either zero or one. It is well known that the random graph G(n, n–α) obeys the (monadic) zero–one k-law for any k ∈ ? and any rational α > 1 other than 1 + 1/m (for any positive integer m). It is also well known that the random graph does not obey both k-laws for the other rational positive α and sufficiently large k. In this paper, we obtain lower and upper bounds on the largest at which both zero–one k-laws hold for α = 1 + 1/m.  相似文献   

12.
In this paper, a large family \({\mathcal{F}^k(l)}\) of binary sequences of period 2 n ? 1 is constructed for odd n = 2m + 1, where k is any integer with gcd(n, k) = 1 and l is an integer with 1 ≤ l ≤ m. This generalizes the construction of modified Gold sequences by Rothaus. It is shown that \({\mathcal{F}^k(l)}\) has family size \({2^{ln}+2^{(l-1)n}+\cdots+2^n+1}\), maximum nontrivial correlation magnitude 1 + 2m+l. Based on the theory of quadratic forms over finite fields, all exact correlation values between sequences in \({\mathcal{F}^k(l)}\) are determined. Furthermore, the family \({\mathcal{F}^k(2)}\) is discussed in detail to compute its complete correlation distribution.  相似文献   

13.
Let R be a commutative ring with identity. Let Γ(R) denote the maximal graph corresponding to the non-unit elements of R, i.e., Γ(R) is a graph with vertices the non-unit elements of R, where two distinct vertices a and b are adjacent if and only if there is a maximal ideal of R containing both. In this paper, we have shown that, for any finite ring R which is not a field, Γ(R) is a Euler graph if and only if R has odd cardinality. Moreover, for any finite ring R ? R 1×R 2× · · · ×R n, where the R i is a local ring of cardinality p i αi for all i, and the p i’s are distinct primes, it is shown that Aut(Γ(R)) is isomorphic to a finite direct product of symmetric groups. We have also proved that clique(G(R)’) = χ(G(R)’) for any semi-local ring R, where G(R)’ denote the comaximal graph associated to R.  相似文献   

14.
The eccentric connectivity index \(\xi ^c(G)\) of a connected graph G is defined as \(\xi ^c(G) =\sum _{v \in V(G)}{deg(v) e(v)},\) where deg(v) is the degree of vertex v and e(v) is the eccentricity of v. The eccentric graph, \(G_e\), of a graph G has the same set of vertices as G,  with two vertices uv adjacent in \(G_e\) if and only if either u is an eccentric vertex of v or v is an eccentric vertex of u. In this paper, we obtain a formula for the eccentric connectivity index of the eccentric graph of a regular dendrimer. We also derive a formula for the eccentric connectivity index for the second iteration of eccentric graph of regular dendrimer.  相似文献   

15.
A real number α ∈ [0, 1) is a jump for an integer r ≥ 2 if there exists c > 0 such that for any ∈ > 0 and any integer mr, there exists an integer n 0 such that any r-uniform graph with n > n 0 vertices and density ≥ α + ∈ contains a subgraph with m vertices and density ≥ α + c. It follows from a fundamental theorem of Erdös and Stone that every α ∈ [0, 1) is a jump for r = 2. Erdös also showed that every number in [0, r!/r r ) is a jump for r ≥ 3 and asked whether every number in [0, 1) is a jump for r ≥ 3 as well. Frankl and Rödl gave a negative answer by showing a sequence of non-jumps for every r ≥ 3. Recently, more non-jumps were found for some r ≥ 3. But there are still a lot of unknowns on determining which numbers are jumps for r ≥ 3. The set of all previous known non-jumps for r = 3 has only an accumulation point at 1. In this paper, we give a sequence of non-jumps having an accumulation point other than 1 for every r ≥ 3. It generalizes the main result in the paper ‘A note on the jumping constant conjecture of Erdös’ by Frankl, Peng, Rödl and Talbot published in the Journal of Combinatorial Theory Ser. B. 97 (2007), 204–216.  相似文献   

16.
In this paper, we improve existing results in the field of compressed sensing and matrix completion when sampled data may be grossly corrupted. We introduce three new theorems. (1) In compressed sensing, we show that if the m×n sensing matrix has independent Gaussian entries, then one can recover a sparse signal x exactly by tractable ? 1 minimization even if a positive fraction of the measurements are arbitrarily corrupted, provided the number of nonzero entries in x is O(m/(log(n/m)+1)). (2) In the very general sensing model introduced in Candès and Plan (IEEE Trans. Inf. Theory 57(11):7235–7254, 2011) and assuming a positive fraction of corrupted measurements, exact recovery still holds if the signal now has O(m/(log2 n)) nonzero entries. (3) Finally, we prove that one can recover an n×n low-rank matrix from m corrupted sampled entries by tractable optimization provided the rank is on the order of O(m/(nlog2 n)); again, this holds when there is a positive fraction of corrupted samples.  相似文献   

17.
For any positive integers k and m, the k-step m-competition graph C m k (D) of a digraph D has the same set of vertices as D and there is an edge between vertices x and y if and only if there are distinct m vertices v1, v2, · · ·, v m in D such that there are directed walks of length k from x to v i and from y to v i for all 1 ≤ im. The m-competition index of a primitive digraph D is the smallest positive integer k such that C m k (D) is a complete graph. In this paper, we obtained some sharp upper bounds for the m-competition indices of various classes of primitive digraphs.  相似文献   

18.
In this paper, we study the initial-boundary value problem of porous medium equation ρ(x)u t  = Δu m  + V(x)h(t)u p in a cone D = (0, ∞) × Ω, where \({V(x)\,{\sim}\, |x|^\sigma, h(t)\,{\sim}\, t^s}\). Let ω 1 denote the smallest Dirichlet eigenvalue for the Laplace-Beltrami operator on Ω and let l denote the positive root of l 2 + (n ? 2)l = ω 1. We prove that if \({m < p \leq 1+(m-1)(1+s)+\frac{2(s+1)+\sigma}{n+l}}\), then the problem has no global nonnegative solutions for any nonnegative u 0 unless u 0 = 0; if \({p >1 +(m-1)(1+s)+\frac{2(s+1)+\sigma}{n+l}}\), then the problem has global solutions for some u 0 ≥ 0.  相似文献   

19.
A set S of vertices is independent or stable in a graph G, and we write S ∈ Ind (G), if no two vertices from S are adjacent, and α(G) is the cardinality of an independent set of maximum size, while core(G) denotes the intersection of all maximum independent sets. G is called a König–Egerváry graph if its order equals α(G) + μ(G), where μ(G) denotes the size of a maximum matching. The number def (G) = | V(G) | ?2μ(G) is the deficiency of G. The number \({d(G)=\max\{\left\vert S\right\vert -\left\vert N(S)\right\vert :S\in\mathrm{Ind}(G)\}}\) is the critical difference of G. An independent set A is critical if \({\left\vert A\right\vert -\left\vert N(A)\right\vert =d(G)}\) , where N(S) is the neighborhood of S, and α c (G) denotes the maximum size of a critical independent set. Larson (Eur J Comb 32:294–300, 2011) demonstrated that G is a König–Egerváry graph if and only if there exists a maximum independent set that is also critical, i.e., α c (G) = α(G). In this paper we prove that: (i) \({d(G)=\left \vert \mathrm{core}(G) \right \vert -\left \vert N (\mathrm{core}(G))\right\vert =\alpha(G)-\mu(G)=def \left(G\right)}\) holds for every König–Egerváry graph G; (ii) G is König–Egerváry graph if and only if each maximum independent set of G is critical.  相似文献   

20.
Batch codes, first introduced by Ishai, Kushilevitz, Ostrovsky, and Sahai, mimic a distributed storage of a set of n data items on m servers, in such a way that any batch of k data items can be retrieved by reading at most some t symbols from each server. Combinatorial batch codes, are replication-based batch codes in which each server stores a subset of the data items. In this paper, we propose a generalization of combinatorial batch codes, called multiset combinatorial batch codes (MCBC), in which n data items are stored in m servers, such that any multiset request of k items, where any item is requested at most r times, can be retrieved by reading at most t items from each server. The setup of this new family of codes is motivated by recent work on codes which enable high availability and parallel reads in distributed storage systems. The main problem under this paradigm is to minimize the number of items stored in the servers, given the values of nmkrt, which is denoted by N(nkmtr). We first give a necessary and sufficient condition for the existence of MCBCs. Then, we present several bounds on N(nkmtr) and constructions of MCBCs. In particular, we determine the value of N(nkm, 1; r) for any \(n\ge \left\lfloor \frac{k-1}{r}\right\rfloor {m\atopwithdelims ()k-1}-(m-k+1)A(m,4,k-2)\), where \(A(m,4,k-2)\) is the maximum size of a binary constant weight code of length m, distance four and weight \(k-2\). We also determine the exact value of N(nkm, 1; r) when \(r\in \{k,k-1\}\) or \(k=m\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号