首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Let \({\mathcal{P} \subset \mathbb{R}^{d}}\) and \({\mathcal{Q} \subset \mathbb{R}^{e}}\) be integral convex polytopes of dimension d and e which contain the origin of \({\mathbb{R}^{d}}\) and \({\mathbb{R}^{e}}\), respectively. We say that an integral convex polytope \({\mathcal{P}\subset \mathbb{R}^{d}}\) possesses the integer decomposition property if, for each \({n\geq1}\) and for each \({\gamma \in n\mathcal{P}\cap\mathbb{Z}^{d}}\), there exist \({\gamma^{(1)}, . . . , \gamma^{(n)}}\) belonging to \({\mathcal{P}\cap\mathbb{Z}^{d}}\) such that \({\gamma = \gamma^{(1)} +. . .+\gamma^{(n)}}\). In the present paper, under some assumptions, the necessary and sufficient condition for the free sum of \({\mathcal{P}}\) and \({\mathcal{Q}}\) to possess the integer decomposition property will be presented.  相似文献   

2.
In this paper, we study helicoidal surfaces without parabolic points in Euclidean 3-space \({\mathbb{R} ^{3}}\), satisfying the condition \({\Delta ^{II}\mathbf{G}=f(\mathbf{G}+C)}\), where \({\Delta ^{II}}\) is the Laplace operator with respect to the second fundamental form, f is a smooth function on the surface and C is a constant vector. Our main results state that helicoidal surfaces without parabolic points in \({ \mathbb{R} ^{3}}\) which satisfy the condition \({\Delta ^{II} \mathbf{G}=f(\mathbf{G}+C)}\), coincide with helicoidal surfaces with non-zero constant Gaussian curvature.  相似文献   

3.
We study Willmore surfaces of constant Möbius curvature \({\mathcal{K}}\) in \({\mathbb{S}}^4\) . It is proved that such a surface in \({\mathbb{S}}^3\) must be part of a minimal surface in \({\mathbb{R}}^3\) or the Clifford torus. Another result in this paper is that an isotropic surface (hence also Willmore) in \({\mathbb{S}}^4\) of constant \({\mathcal{K}}\) could only be part of a complex curve in \({\mathbb{C}}^2 \cong {\mathbb{R}}^4\) or the Veronese 2-sphere in \({\mathbb{S}}^4\) . It is conjectured that they are the only possible examples. The main ingredients of the proofs are over-determined systems and isoparametric functions.  相似文献   

4.
The purpose of this paper is to identify all eight of the basic Cayley–Dickson doubling products. A Cayley–Dickson algebra \({\mathbb{A}_{N+1}}\) of dimension \({2^{N+1}}\) consists of all ordered pairs of elements of a Cayley–Dickson algebra \({\mathbb{A}_{N}}\) of dimension \({2^N}\) where the product \({(a, b)(c, d)}\) of elements of \({\mathbb{A}_{N+1}}\) is defined in terms of a pair of second degree binomials \({(f(a, b, c, d), g(a, b, c,d))}\) satisfying certain properties. The polynomial pair\({(f, g)}\) is called a ‘doubling product.’ While \({\mathbb{A}_{0}}\) may denote any ring, here it is taken to be the set \({\mathbb{R}}\) of real numbers. The binomials \({f}\) and \({g}\) should be devised such that \({\mathbb{A}_{1} = \mathbb{C}}\) the complex numbers, \({\mathbb{A}_{2} = \mathbb{H}}\) the quaternions, and \({\mathbb{A}_{3} = \mathbb{O}}\) the octonions. Historically, various researchers have used different yet equivalent doubling products.  相似文献   

5.
We prove that a deformation of a hypersurface in an (n + 1)-dimensional real space form \({{\mathbb S}^{n+1}_{p,1}}\) induces a Hamiltonian variation of the normal congruence in the space \({{\mathbb L}({\mathbb S}^{n+1}_{p,1})}\) of oriented geodesics. As an application, we show that every Hamiltonian minimal submanifold in \({{\mathbb L}({\mathbb S}^{n+1})}\) (resp. \({{\mathbb L}({\mathbb H}^{n+1})}\)) with respect to the (para-)Kähler Einstein structure is locally the normal congruence of a hypersurface \({\Sigma}\) in \({{\mathbb S}^{n+1}}\) (resp. \({{\mathbb H}^{n+1}}\)) that is a critical point of the functional \({{\mathcal W}(\Sigma) = \int_\Sigma\left(\Pi_{i=1}^n|\epsilon+k_i^2|\right)^{1/2}}\), where ki denote the principal curvatures of \({\Sigma}\) and \({\epsilon \in \{-1, 1\}}\). In addition, for \({n = 2}\), we prove that every Hamiltonian minimal surface in \({{\mathbb L}({\mathbb S}^{3})}\) (resp. \({{\mathbb L}({\mathbb H}^{3})}\)), with respect to the (para-)Kähler conformally flat structure, is the normal congruence of a surface in \({{\mathbb S}^{3}}\) (resp. \({{\mathbb H}^{3}}\)) that is a critical point of the functional \({{\mathcal W}\prime(\Sigma) = \int_\Sigma\sqrt{H^2-K+1}}\) (resp. \({{\mathcal W}\prime(\Sigma) = \int_\Sigma\sqrt{H^2-K-1}}\)), where H and K denote, respectively, the mean and Gaussian curvature of \({\Sigma}\).  相似文献   

6.
Let X be a non-void set and A be a subalgebra of \({\mathbb{C}^{X}}\) . We call a \({\mathbb{C}}\) -linear functional \({\varphi}\) on A a 1-evaluation if \({\varphi(f) \in f(X) }\) for all \({f\in A}\) . From the classical Gleason–Kahane–?elazko theorem, it follows that if X in addition is a compact Hausdorff space then a mapping \({\varphi}\) of \({C_{\mathbb{C}}(X) }\) into \({\mathbb{C}}\) is a 1-evaluation if and only if \({\varphi}\) is a \({\mathbb{C}}\) -homomorphism. In this paper, we aim to investigate the extent to which this equivalence between 1-evaluations and \({\mathbb{C}}\) -homomorphisms can be generalized to a wider class of self-conjugate subalgebras of \({\mathbb{C}^{X}}\) . In this regards, we prove that a \({\mathbb{C}}\) -linear functional on a self-conjugate subalgebra A of \({\mathbb{C}^{X}}\) is a positive \({\mathbb{C}}\) -homomorphism if and only if \({\varphi}\) is a \({\overline{1}}\) -evaluation, that is, \({\varphi(f) \in\overline{f\left(X\right)}}\) for all \({f\in A}\) . As consequences of our general study, we prove that 1-evaluations and \({\mathbb{C}}\) -homomorphisms on \({C_{\mathbb{C}}\left( X\right)}\) coincide for any topological space X and we get a new characterization of realcompact topological spaces.  相似文献   

7.
Our aim in this article is to study the geometry of n-dimensional complete spacelike submanifolds immersed in a semi-Euclidean space \({\mathbb{R}^{n+p}_{q}}\) of index q, with \({1\leq q\leq p}\). Under suitable constraints on the Ricci curvature and on the second fundamental form, we establish sufficient conditions to a complete maximal spacelike submanifold of \({\mathbb{R}^{n+p}_{q}}\) be totally geodesic. Furthermore, we obtain a nonexistence result concerning complete spacelike submanifolds with nonzero parallel mean curvature vector in \({\mathbb{R}^{n+p}_{p}}\) and, as a consequence, we get a rigidity result for complete constant mean curvature spacelike hypersurfaces immersed in the Lorentz–Minkowski space \({\mathbb{R}^{n+1}_{1}}\).  相似文献   

8.
We construct three kinds of complete embedded minimal surfaces in \({\mathbb {H}^2\times \mathbb {R}}\) . The first is a simply connected, singly periodic, infinite total curvature surface. The second is an annular finite total curvature surface. These two are conjugate surfaces just as the helicoid and the catenoid are in \({\mathbb {R}^3}\) . The third one is a finite total curvature surface which is conformal to \({\mathbb {S}^2\setminus\{p_1,\ldots,p_k\}, k\geq3.}\)  相似文献   

9.
In the unit cone\({\mathcal{C} := \{(x, y, z)} \in {\mathbb R}^{3} : {x}^{2} + {y}^{2} < {z}^{2}, {z} > {0}\}\) we establish a geometric maximum principle for H-surfaces, where its mean curvature \({H = H(x, y, z)}\) is optimally bounded. Consequently, these surfaces cannot touch the conical boundary \({\partial \mathcal{C}}\) at interior points and have to approach \({\partial \mathcal{C}}\) transversally. By a nonlinear continuity method, we then solve the Dirichlet problem of the H-surface equation in central projection for Jordan-domains \({\Omega}\) which are strictly convex in the following sense: On its whole boundary \({\partial \mathcal{C}(\Omega)}\) their associate cone \({\mathcal{C}(\Omega) := \{(rx, ry, r) \in {\mathbb R}^{3} : (x, y) \in \Omega, r \in (0,+\infty)}\}\) admits rotated unit cones \({O \circ \mathcal{C}}\) as solids of support, where \({O \in {\mathbb R}^{3\times3}}\) represents a rotation in the Euclidean space. Thus we construct the unique H-surface with one-to-one central projection onto these domains \({\Omega}\) bounding a given Jordan-contour \({\Gamma \subset \mathcal{C} \backslash \{0\}}\) with one-toone central projection.  相似文献   

10.
For a fairly general reductive group \({G_{/\mathbb{Q}_p}}\), we explicitly compute the space of locally algebraic vectors in the Breuil–Herzig construction \({\Pi(\rho)^{ord}}\), for a potentially semistable Borel-valued representation \({\rho}\) of \({Gal(\bar{\mathbb{Q}}_p/\mathbb{Q}_p)}\). The point being we deal with the whole representation, not just its socle—and we go beyond \({GL_n(\mathbb{Q}_p)}\). In the case of \({GL_2(\mathbb{Q}_p)}\), this relation is one of the key properties of the \({p}\)-adic local Langlands correspondence. We give an application to \({p}\)-adic local-global compatibility for \({\Pi(\rho)^{ord}}\) for modular representations, but with no indecomposability assumptions.  相似文献   

11.
Let \({\mathcal{L} = \sum_{i=1}^m X_i^2}\) be a real sub-Laplacian on a Carnot group \({\mathbb{G}}\) and denote by \({\nabla_\mathcal{L} = (X_1,\ldots,X_m)}\) the intrinsic gradient related to \({\mathcal{L}}\). Our aim in this present paper is to analyze some features of the \({\mathcal{L}}\)-gauge functions on \({\mathbb{G}}\), i.e., the homogeneous functions d such that \({\mathcal{L}(d^\gamma) = 0}\) in \({\mathbb{G} \setminus \{0\}}\) , for some \({\gamma \in \mathbb{R} \setminus \{0\}}\). We consider the relation of \({\mathcal{L}}\)-gauge functions with: the \({\mathcal{L}}\)-Eikonal equation \({|\nabla_\mathcal{L} u| = 1}\) in \({\mathbb{G}}\); the Mean Value Formulas for the \({\mathcal{L}}\)-harmonic functions; the fundamental solution for \({\mathcal{L}}\); the Bôcher-type theorems for nonnegative \({\mathcal{L}}\)-harmonic functions in “punctured” open sets \({\dot \Omega:= \Omega \setminus \{x_0\}}\).  相似文献   

12.
We consider the strong field asymptotics for the occurrence of zero modes of certain Weyl–Dirac operators on \({\mathbb{R}^3}\). In particular, we are interested in those operators \({\mathcal{D}_B}\) for which the associated magnetic field \({B}\) is given by pulling back a two-form \({\beta}\) from the sphere \({\mathbb{S}^2}\) to \({\mathbb{R}^3}\) using a combination of the Hopf fibration and inverse stereographic projection. If \({\int_{\mathbb{s}^2} \beta \neq 0}\), we show that
$$\sum_{0 \leq t \leq T} {\rm dim Ker} \mathcal{D}{tB}=\frac{T^2}{8\pi^2}\,\Big| \int_{\mathbb{S}^2}\beta\Big|\,\int_{\mathbb{S}^2}|{\beta}| +o(T^2)$$
as \({T\to+\infty}\). The result relies on Erd?s and Solovej’s characterisation of the spectrum of \({\mathcal{D}_{tB}}\) in terms of a family of Dirac operators on \({\mathbb{S}^2}\), together with information about the strong field localisation of the Aharonov–Casher zero modes of the latter.
  相似文献   

13.
We consider a finite composition of generalized Hénon mappings \({\mathfrak {f}}:{\mathbb {C}}^2\rightarrow {\mathbb {C}}^2\) and its Green function \({\mathfrak {g}}^+:{\mathbb {C}}^2\rightarrow {\mathbb {R}}_{\ge 0}\) (see Sect. 2). It is well known that each level set \(\{{\mathfrak {g}}^+=c\}\) for \(c>0\) is foliated by biholomorphic images of \({\mathbb {C}}\) and each leaf is dense. In this paper, we prove that each leaf is actually an injective Brody curve in \(\mathbb {P}^2\) (see Sect. 4). We also study the behavior of the level sets of \({\mathfrak {g}}^+\) near infinity.  相似文献   

14.
Involutions and anti-involutions are self-inverse linear mappings. In three-dimensional Euclidean space \({\mathbb{R}^{3}}\), a reflection of a vector in a plane can be represented by an involution or anti-involution mapping obtained by real-quaternions. A reflection of a line about a line in \({\mathbb{R}^{3}}\) can also be represented by an involution or anti-involution mapping obtained by dual real-quaternions. In this paper, we will represent involution and anti-involution mappings obtaind by dual split-quaternions and a geometric interpretation of each as rigid-body (screw) motion in three-dimensional Lorentzian space \({\mathbb{R}_1^{3} }\).  相似文献   

15.
Let \({\{\varphi_n(z)\}_{n\ge0}}\) be a sequence of inner functions satisfying that \({\zeta_n(z):=\varphi_n(z)/\varphi_{n+1}(z)\in H^\infty(z)}\) for every n ≥ 0 and \({\{\varphi_n(z)\}_{n\ge0}}\) have no nonconstant common inner divisors. Associated with it, we have a Rudin type invariant subspace \({\mathcal{M}}\) of \({H^2(\mathbb{D}^2)}\) . We write \({\mathcal{N}= H^2(\mathbb{D}^2)\ominus\mathcal{M}}\) . If \({\{\zeta_n(z)\}_{n\ge0}}\) ia a mutually prime sequence, then we shall prove that \({rank_{\{T^\ast_z,T^\ast_w\}} \mathcal{N}=1}\) and \({rank_{\{\mathcal{F}^\ast_z\}}(\mathcal{M}\ominus w\mathcal{M})=1}\) , where \({\mathcal{F}_z}\) is the fringe operator on \({\mathcal{M}\ominus w\mathcal{M}}\) .  相似文献   

16.
In this article, using the heat kernel approach from Bouche (Asymptotic results for Hermitian line bundles over complex manifolds: The heat kernel approach, Higher-dimensional complex varieties, pp 67–81, de Gruyter, Berlin, 1996), we derive sup-norm bounds for cusp forms of integral and half-integral weight. Let \({\Gamma\subset \mathrm{PSL}_{2}(\mathbb{R})}\) be a cocompact Fuchsian subgroup of first kind. For \({k \in \frac{1}{2} \mathbb{Z}}\) (or \({k \in 2\mathbb{Z}}\)), let \({S^{k}_{\nu}(\Gamma)}\) denote the complex vector space of cusp forms of weight-k and nebentypus \({\nu^{2k}}\) (\({\nu^{k\slash 2}}\), if \({k \in 2\mathbb{Z}}\)) with respect to \({\Gamma}\), where \({\nu}\) is a unitary character. Let \({\lbrace f_{1},\ldots,f_{j_{k}} \rbrace}\) denote an orthonormal basis of \({S^{k}_{\nu}(\Gamma)}\). In this article, we show that as \({k \rightarrow \infty,}\) the sup-norm for \({\sum_{i=1}^{j_{k}}y^{k}|f_{i}(z)|^{2}}\) is bounded by O(k), where the implied constant is independent of \({\Gamma}\). Furthermore, using results from Berman (Math. Z. 248:325–344, 2004), we extend these results to the case when \({\Gamma}\) is cofinite.  相似文献   

17.
For every genus g, we prove that \({\mathbf{S}^2\times\mathbf{R}}\) contains complete, properly embedded, genus-g minimal surfaces whose two ends are asymptotic to helicoids of any prescribed pitch. We also show that as the radius of the \({\mathbf{S}^2}\) tends to infinity, these examples converge smoothly to complete, properly embedded minimal surfaces in \({\mathbf{R}^3}\) that are helicoidal at infinity. We prove that helicoidal surfaces in \({\mathbf{R}^3}\) of every prescribed genus occur as such limits of examples in \({\mathbf{S}^2\times\mathbf{R}}\).  相似文献   

18.
In this paper, we study bi-null curves in semi-Euclidean 6-space with index 3, \({\mathbb{R}_{3}^{6}}\). We construct the Frenet frame and Cartan curvature functions of bi-null curves in \({\mathbb{R}_{3}^{6}}\). Also we discuss some properties of bi-null Cartan curves in terms of the Cartan curvatures.  相似文献   

19.
In this paper, Bäcklund’s Theorem is introduced on the Lorentzian n-submanifold of the Minkowski space \({\mathbb{E}_{1}^{2n-1}}\) by using the method of moving frames. Also, we prove the Integrability Theorem for the Lorentzian n-submanifold of the Minkowski space \({\mathbb{E}_{1}^{2n-1}}\).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号