首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A multi-vortex model of the vortex sheets shed from the sharp leading edges of slender wings is considered. The method, which is developed within the framework of slender-body theory, is designed to deal with those situations in which more than one centre of rotation is formed on the wing, for example on a slender wing with lengthwise camber or with a strake. Numerical results are presented, firstly for situations where comparison can be made with a vortex sheet model and secondly for cases, such as those described above, where a vortex sheet model is unable to describe the flow. Where comparison is available, agreement is good and in the cases where more than one vortex system is present interesting interactions are obtained.  相似文献   

2.
The pressure sensitive paint (PSP) and particle image velocimetry (PIV) techniques are applied to the flow around a delta wing. These investigations are a contribution to the International Vortex Flow Experiment 2 (VFE-2). The delta wing is equipped with rounded as well as with sharp leading edges. To demonstrate the advantages of a combined application of PSP and PIV for flow investigation the results of a specific case are discussed, where an inner and outer primary vortex above the delta wing with rounded leading edges develop.  相似文献   

3.
A solution of the problem of the flow around a V-wing with supersonic leading edges at low angles of attack and yaw is obtained within the framework of the linear theory. Possible patterns of nonsymmetric flow around the wing are analyzed as functions of the wing geometry and the freestream velocity direction, and the ranges of angles of attack and yaw on which these patterns are realized are established. Some previously undescribed shock wave configurations are found to exist in the wing-induced conical flows.  相似文献   

4.
The shock wave structure of flow around a V-wing and its properties determining the conical flow topology are numerically investigated within the framework of the inviscid gas model on a wide range of the angles of attack and yaw when in the disturbed supersonic flow either nonsymmetric Mach interaction between the shocks attached to the leading edges of the wing or a shockless flow in the compressed layer on the windward cantilever is realized. The subranges of the angles of attack and yaw with the disturbed flow properties characteristic of the wing of the given geometry are determined. It is found that at high angles of attack, when the branching point of the bow shock beneath the leeward cantilever generates an intense contact discontinuity, the structure of the conical flow in the shock layer on the windward cantilever involves a singularity of a new type which can be characterized as a “vortical” Ferri singularity. It is located above the point of convergence of the streamlines proceeding from the leading edges of the wing, at the vertex of the corresponding contact discontinuity. Flow patterns with the point of convergence of the streamlines proceeding from the leading edges located in the elliptical flow region, which is placed at a local maximum of the pressure distribution over the surface are also found. The range of the angles of attack and yaw on which this new property of supersonic conical flows is realized in the presence of a branched shock system is determined.  相似文献   

5.
A combined numerical method, based on the successive calculation of the flow regions near the blunt leading edge and center of a wing, is proposed on the assumption that the angle of attack and the relative thickness and bluntness radius of the leading edge are small. The flow in the neighborhood of the leading edge of the wing is assumed to be identical to that on the windward surface of a slender body coinciding in shape with the surface of the blunt nose of the wing and is numerically determined in accordance with [1]. The flow parameters near the center of the wing are calculated within the framework of the law of plane sections [2]. In both regions the equations of motion of the gas are integrated by the Godunov method. The flow fields around elliptic cones are obtained within the framework of the combined method and the method of [3], A comparative analysis of the results of the calculations makes it possible to estimate the region of applicability of the method proposed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 159–164, January–February, 1989.The authors wish to express their gratitude to A. A. Gladkov for discussing their work, and to G. P. Voskresenskii, O. V. Ivanov, and V. A. Stebunov for making available a program for calculating supersonic flow over a wing with a detached shock.  相似文献   

6.
The results of a numerical study of a new type of singularities in the Mach shock-wave structure realized in supersonic nonsymmetric conical flows over V-wings with a bow shock attached to the leading edges are presented. Within the framework of the ideal gas model we study the changes in the shock system on transition, with increase in the sweep angle, from the region of nonsymmetric Mach interaction of the shocks attached to the leading edges of the wing to the region of special flow patterns, where on the windward cantilever surface a rarefaction flow is realized rather than a flow with an internal shock. It is shown, in particular, that in the region with special wing flow patterns a Mach system of shocks with a submerged shock proceeding from the branch point above the windward cantilever may exist.  相似文献   

7.
Membrane wings have applications that involve low Reynolds number flyers such as micro air vehicles. The time-averaged and time-dependent deformations of the membrane affect the aerodynamic characteristics of the wing, primarily in the region beyond the maximum aerodynamic efficiency of the wing. This paper investigates an appropriate nondimensional vibration frequency scaling of a spanwise tensioned membrane with free (unattached) leading and trailing edges at low Reynolds numbers relative to nondimensional aeroelastic parameters. Silicone rubber membranes with varying spanwise pre-tension, aerodynamic tension (due to wing angle-of-attack and flow dynamic pressure), modulus of elasticity, span, and thickness are studied. Experimental results are compared to a proposed scaling that simplifies the aerodynamic loading as a uniform pressure distribution acting on the membrane. Data is further compared and discussed relative to previous published results of membrane wings with finite wing spans (three-dimensional flow) and fixed (rigid) leading edges.  相似文献   

8.
Numerous studies on the aerodynamics of insect wing flapping were carried out on different approaches of flight investigations, model experiments, and numerical simulations, but the theoretical modeling remains to be explored. In the present paper, an analytic approach is presented to model the flow interactions of wing flapping in air for small insects with the surrounding flow fields being highly unsteady and highly viscous. The model of wing flapping is a 2-D flat plate, which makes plunging and pitching oscillations as well as quick rotations reversing its positions of leading and trailing edges, respectively, during stroke reversals. It contains three simplified aerodynamic assumptions: (i) unsteady potential flow; (ii) discrete vortices shed from both leading and trailing edges of the wing; (iii) Kutta conditions applied at both edges. Then the problem is reduced to the solution of the unsteady Laplace equation, by using distributed singularities, i.e., sources/sinks, and vortices in the field. To validate the present physical model and analytic method proposed via benchmark examples, two elemental motions in wing flapping and a case of whole flapping cycles are analyzed, and the predicted results agree well with available experimental and numerical data. This verifies that the present analytical approach may give qualitatively correct and quantitatively reasonable results. Furthermore, the total fluid-dynamic force in the present method can be decomposed into three parts: one due to the added inertial (or mass) effect, the other and the third due to the induction of vortices shed from the leading-and the trailing-edge and their images respectively, and this helps to reveal the flow control mechanisms in insect wing flapping. The project supported by the National Natural Science Foundation of China (10072066) and the Chinese Academy of Sciences (KJCX-SW-LO4, KJCX2-SW-L2)  相似文献   

9.
The problem of flow around a V-shaped wing with supersonic leading edges is solved. The method employed is that of fitting with respect to a space variable in which the system of equations of motion is hyperbolic, using the computing scheme of V. V. Rusanov, A comparison between the results of these calculations and experimental data in relation to the pressure distribution along the wing span reveals excellent agreement, except for a limited region, in which the compression jump incident on the plane of the wing interacts with the boundary layer. A comparison between the results obtained by means of the oblique-jump equations and by numerical calculations indicates that the method in question is reasonably accurate.Translated from Izvestiya Akademu Nauk SSSE, Mekhanika Zhidkosti i Gaza, No. 3, pp. 180–185, May–June, 1971.The author is grateful to A. L. Gonor and V. V. Rusanov for interest in this work.  相似文献   

10.
Numerical models based on the vortex lattice concept using free vortex lines have been developed for the calculation of separated flow about cranked wings. Various separated flow models are developed assuming the flow to be separated along the leading edges of (i) the inner wing, (ii) the entire wing and (iii) the inner wing and the outboard part of the outer wing. To illustrate the effects of separation, attached flow solutions are also obtained. Results are compared with available experimental results. Agreement with separated flow solutions is usually good except at very high incidence.  相似文献   

11.
The visualization of flows in two dimensions by using planar laser light sheets is a commonly used technique. We extend this technique to three dimensions by rapidly scanning the laser light sheet to obtain a set of slices of the flow around a full span delta wing. The leading edge vortices, which are marked with smoke, are unburst by tangential blowing around the leading edges at angles of attack in excess of 25°. Since the measurement period is on the order of the smallest convective time scale, we obtain a virtually instantaneous set of planar cross sections of the flow. Software based on the marching cubes algorithm is used to stack the slices and reconstruct a three-dimensional surface of the smoke-seeded fluid. This surface, which corresponds to the vortices, clearly shows the qualitative effects of blowing on the delta wing flow.  相似文献   

12.
Numerous methods have been developed to calculate the aerodynamic characteristics of wings of low aspect ratio in the case when there is flow separation from the wing edges. Among the methods based on direct solution of the three-dimensional Euler equations there are the method of discrete vortices [1, 2] and the panel method [3]. In addition, numerical and asymptotic methods [4, 5] based on the theory of slender bodies [6] are used. One of the most important shortcomings of this theory is the dependence of the flow pattern at a given section of the wing on only the upstream flow. The obtained solutions therefore contain no information about the influence of the trailing edge of the wing, on which, as is well known, the Chaplygin-Zhukovskii condition is satisfied. The aim of the present paper is to construct an asymptotic theory of higher approximation and a corresponding numerical method for calculating flow separation from wings of low aspect ratio in which this shortcoming is absent.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 141–147, July–August, 1982.  相似文献   

13.
The vortex flow characteristics of a sharp-edged delta wing with an apex strake was investigated through the visualization and particle image velocimetry (PIV) measurement of the wing-leeward flow region, and the wing-surface pressure measurement. The wing model was a flat-plate, and 65°-sweep cropped-delta wing with sharp leading edges. The apex strake was also a flat-plate wing with a cropped-delta shape of 65°/90° sweep, and it can change its incidence angle. The flow Reynolds number was 2.2 × 105 for the flow visualization and 8.2 × 105 for the PIV and wing-surface pressure measurements. The physics of the vortex flow in the wing-leeward flow region and the suction-pressure distribution on the wing upper-surface were interrelated and analyzed. The effect of a positive (negative) strake incidence-angle was the upward movement of the strake and wing vortices away from (downward movement of the strake and wing vortices toward) the wing-upper surface and the delayed (enhanced) coiling interaction between them. This change of vortex flow characteristics projected directly on the suction pressure distribution on the wing upper-surface.  相似文献   

14.
The near-surface flow structure and topology on a delta wing of low sweep angle, having sinusoidal leading edges of varying amplitude and wavelength, are investigated using a stereoscopic technique of high-image-density particle image velocimetry at a Reynolds number of 15,000. Identification of critical points, in conjunction with surface-normal vorticity and velocity, provides a basis for determining the effectiveness of a given leading edge. At high angle of attack, where large-scale three-dimensional separation occurs from the wing with a straight leading edge, an amplitude of the leading-edge protuberance as small as one-half of one percent of the chord of the wing can substantially alter the near-surface topology. When the amplitude reaches a value of four percent of the chord, it is possible to completely eradicate the negative focus of large-scale, three-dimensional separation, in favor of a positive focus of attachment. Moreover, alteration of the near-surface topology is most effective when the ratio of the wavelength to amplitude of the sinusoidal leading edge is maintained at a small value.  相似文献   

15.
The effect of sound on the flow around plates with semicircular or square leading edges and square trailing edges located in a low turbulence open jet has been studied. In all circumstances the length of the leading edge separation bubbles associated with square leading edge plates was found to oscillate. When sound was applied to the flow around these plates, the leading edge shear layers reattached closer to the leading edge and the oscillations in bubble length occurred at the applied sound frequency, generating patches of concentrated vorticity in the boundary layers. These vorticity patches moved downstream near the plate surface and then beyond the trailing edge to form vortex cores in a street with a Strouhal number equal to the applied sound value. Sometimes these vortex streets are unstable and break down into streets with Strouhal numbers approaching those observed without sound. These effects of sound were not observed in the flow around plates with semicircular leading edges. Without sound, square leading edge plates of intermediate length did not shed regular vortex streets.  相似文献   

16.
In a formulation analogous to [1–3], a study is made of the flow of a uniform homogeneous hypersonic ideal gas over the windward side of a slender wing whose surface profile depends on the time. The problem is solved by the thin shock layer method [4]. The bow shock is assumed to be attached to the leading edge of the wing at at least one point. The corrections of the first approximation to the main Newtonian flow are found. For wings of finite aspect ratio, when the bow shock is attached along the whole of the leading edge of the wing, computational formulas are obtained for determining the parameters of the gas in the shock layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 94–101, July–August, 1979.  相似文献   

17.
The conditions of realization of regimes, detected in ideal gas theory [1, 2], with a floating Ferri point on the windward side of a wing with supersonic leading edges and breakdown of the conical flow in the presence of turbulent boundary layer separation are studied using experimental data on the flow over conical V-shaped wings. The experiments were carried out on three models of V-shaped wings with sharp leading edges having a convergence angle=40°, apex angles=30, 45, and 90° and lengths along the central chordL=100, 100, and 70 mm, respectively. The free-stream Mach numberM =3, and the unit Reynolds number Re=1.6 ·108 m–1. Boundary layer transition took place 10 mm from the leading edges of the models at a local Reynolds number Re=(1.5–2)·106. Thus, on most of the wing surface the inner shock waves interacted with a turbulent boundary layer. In the experiments we employed; optical methods, which made it possible to observe shadow flow patterns in a plane normal to the rib of the V-shaped wing [3], as well as in the wake behind the wing and its leading edges (Töpler schlieren method); the oil-film visualization method for obtaining data on the position and dimensions of the separation zones and limiting streamline patterns on the surface of the model. The pressure distribution over the wing span was recorded by means of an automated data collection and processing system based on IKD6TD transducers. The errors of the pressure measurements did not exceed 1 %.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.2, pp. 137–150, March–April, 1992.  相似文献   

18.
Supersonic two-phase flow around bodies is encountered in calculating the flow around the last stages of blades of condensing turbines, in studying the motion of airplanes under cloudy conditions, etc. In the latter case, there is, along with erosion of the forward edges of the wing profiles, a change in the wave structure and interference situation in the flow about the airplane, leading to off-design regimes of motion. Supersonic flow of a two-phase mixture around a wedge, without taking account of the influence of the particles on the flow, was investigated in [1–3]. In [4], also in this kind of simplified setting, a study was made of the interaction of particles with the surface of a wedge in which reflection of the particles from the wall was taken into account. Morganthaler [5] made an experimental study of the flow of a mixture of air and aluminum oxide particles around a wedge. In [6] a theoretical study was made of a supersonic two-phase flow around thin flat axially-symmetric bodies. In particular, for the flow around a wedge, closed form solutions were obtained for the form of the shock wave, the gas streamlines and particle paths, and the distribution of all the parameters along the surface of the wedge. On the basis of the equations given in [7] and the method of characteristics, which were developed for flows consisting of a mixture of a gas and heterogeneous particles in nozzles [8,9], we present below a study of a supersonic two-phase flow around a wedge.Moscow. Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 2, pp. 83–88, March–April, 1972.  相似文献   

19.
The applicability of the criteria of existence of inviscid vortex structures (vortex Ferri singularities) is studied in the case in which a contact discontinuity of the corresponding intensity proceeds from the branching point of the λ shock wave configuration accompanying turbulent boundary layer separation under the action of an inner shock incident on the leeward wing panel. The calculated and experimental data are analyzed, in particular, those obtained using the special shadow technique developed for visualizing supersonic conical streams in nonsymmetric, Mach number 3 flow around a wing with zero sweep of the leading edges and the vee angle of 2π /3. The applicability of the criteria of existence of inviscid vortex structures is established for contact discontinuities generated by the λ shock wave configuration accompanying turbulent boundary layer separation realized under the action of a shock wave incident on the leeward wing panel. Thus, it is established that the formation of the vortex Ferri singularities in a shock layer is independent of the reason for the existence of the contact discontinuity and depends only on its intensity.  相似文献   

20.
The waving wing experiment is a fully three-dimensional simplification of the flapping wing motion observed in nature. The spanwise velocity gradient and wing starting and stopping acceleration that exist on an insect-like flapping wing are generated by rotational motion of a finite span wing. The flow development around a waving wing at Reynolds number between 10,000 and 60,000 has been studied using flow visualization and high-speed PIV to capture the unsteady velocity field. Lift and drag forces have been measured over a range of angles of attack, and the lift curve shape was similar in all cases. A transient high-lift peak approximately 1.5 times the quasi-steady value occurred in the first chord length of travel, caused by the formation of a strong attached leading edge vortex. This vortex appears to develop and shed more quickly at lower Reynolds numbers. The circulation of the leading edge vortex has been measured and agrees well with force data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号