首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Christiansen principle was employed to measure the refractive index of borosilicate glass fibers (13–41 μm diameter) over the visible range. The refractive index for glass fibers at 589.3 nm was measured by temperature and wavelength scan and values obtained were in close agreement. The refractive index for glass fibers as a function of wavelength was measured to an accuracy of < 10−4. The uniformity of the refractive index for a bundle of fibers of slightly different diameter was calculated using the modified Shelyubskii method and compared to experimental values. Theoretical calculations of the transmission by the present work suggest that, for high optical clarity and transmission of Christiansen cell (or transparent composite consisting of glass fiber and polymer), the refractive index must be controlled to the fifth decimal place. For example, the maximum transmission of a fiber/liquid mixture cell at 25°C can increase from 89 to 97% when the standard deviation is reduced from 13 × 10−5 to 9 × 10−5.  相似文献   

2.
We found Oxygen-doped GaAs crystals to be suitable materials for CO2 laser optical component preparation, with application at 10.6 μm. An optical transmission of 55% in the IR spectrum range, between 2 and 15 μm has been reached for such a GaAs type material. The GaAs crystals that we have analysed were grown by two procedures: Horizontal Bridgman (HB) and Liquid Encapsulated Czochralski (LEC). The HB method has been used for obtaining pure (undoped) crystals, while the oxygen-doped GaAs ingots were grown by LEC technique. The two types of samples processed in the same manner as regards mechanical polishing and chemical etching, which were investigated by Hall measurements, optical transmission spectrometry and elastic recoil detection analysis (ERDA) technique. The GaAs:O (LEC) has near semi-insulating properties as can be observed from the results of the electrical resistivity and Hall effect measurements. The ERDA spectrum shows an intense signal of oxygen in the bulk of GaAs:O (LEC) crystals, while the oxygen signal is not present in the ERDA spectrum of the undoped GaAs (HB). We consider that these results could recommend the ERDA technique as a possible qualitative and quantitative analysis in an ion-beam accelerator for oxygen content in oxygen-doped GaAs crystals. The analysis is not sensitive to the native oxide, as could be seen by measuring GaAs (HB) undoped crystals.  相似文献   

3.
The size distribution of sodium perborate crystals was continually monitored using a Malvern sizer during batch crystallization from aqueous solutions carried out under falling supersaturation established at the experiment onset. The growth rate was determined from the time shift of the crystal size distribution expressed in cumulative oversize numbers. The size independent overall growth rate was first order with respect to supersaturation for crystals larger than 150 μm. Crystals between 20 and 150 μm exhibited a significant size-dependent growth rate. Furthermore, the fraction of crystals smaller than 20 μm, formed by primary nucleation, grew extremely slowly or did not grow at all.  相似文献   

4.
The fabrication of a highly efficient Nd3+-doped single-mode fiber laser operating at 1.06 μm is described. The Nd3+ is introduced by doping Nd2O3 into a multicomponent (flint) lead-silicate glass host, Schott commercial optical glass F7. A fabrication technique for doping rare-earth evenly into commercial optical glasses is demostrated. Spectroscopic properties relevant to laser operation in the Nd3+-doped lead-silicate glass fibers were measured and the influence of Pb2+ ions on the spectral properties was analyzed. Owing to the long lifetime and large absorption and emission cross-sections of Nd3+ in this lead-silicate glass host, a high-performance Nd3+-doped lead-silicate fibre laser device operating at 1.06 μm has been successfully demonstrated.  相似文献   

5.
Fluorine-doped silica glasses are produced by the sol-gel method for optical fiber preforms. In order to dope fluorine into silica glass, fluorinated silicon alkoxide, Si(OC2H5)3F, is titrated into SiO2 sol solutions. The fluorine content in silica glass depends on: the fluorine concentration in the gel, the specific surface area of SiO2 particles and the heating rate in the sintering process. Fluorine-doped silica glass with a maximum relative refractive index difference of −0.93% is obtained. Using this technique, optical fibers with a triangular refractive index profile are fabricated with a minimum optical loss of 1.6 dB/km at 1.69 μm wavelength.  相似文献   

6.
A micro-pulling-down process, using Ir crucibles and RF heating, has been used to grow single-crystal fiber and bulk crystals of Tb3Ga5O12 garnet (TGG). Single crystals ranging up to 450 mm in length have been produced. The crystals were 1–4 mm in diameter and were seeded-grown in the direction close to 1 1 1. The maximal crystal diameter achieved was 10 mm. Dependence of behavior of the solid–liquid interface on the growth parameters (temperature and pulling-rate) is discussed in detail.  相似文献   

7.
High optical quality Er3+:YVO4 laser crystals have been grown by using the floating zone method (FZ). The spectroscopic properties and 3 μm lasing of Er3+:YVO4 were investigated. It is found that the Er3+ concentration has a negative effect on the emission of the transition 4I13/24I15/2(1.55 μm ), and a positive effect on that of the 4I11/24I13/2 transition (2.68 μm). With direct upper-state pumping and a plane-concave cavity a self-terminating laser was achieved at the wavelength of 2.724 μm in the 30 at% Er3+ doped sample.  相似文献   

8.
Growth by the micro-pulling-down technique (μ-PD) of homogeneous and crack-free fiber single crystals with composition Ba2Na1−xYbxNb5O15 (0<x<0.08) is reported. The effect of Yb3+ addition to barium sodium niobate (BNN, x=0), having the tungsten bronze-type structure, was examined by room temperature X-ray powder diffraction and differential thermal analysis coupled to thermogravimetry. In the region of the monophased field the structure is tetragonal from x=0.02 to 0.16. Volume change is mainly by variation of the a-axis length. Addition of Yb3+ to BNN could be effective for the production of high optical quality, crack-free, bulk crystals by the Czochralski technique.  相似文献   

9.
Micro-pulling-down (μ-PD) growth apparatus was modified for fluoride crystals. PrF3 was grown with various concentrations of Ce3+ from 0–100%. The crystals were transparent and colorless (CeF3) or greenish and 3 mm in diameter and 15–50 mm in length. Neither visible inclusions nor cracks were observed. Radioluminescence spectra and decay kinetics were measured for the sample set at room temperature. In comparison to the Czochralski or Bridgman method, the μ-PD method allows to produce single crystalline material in a faster thus more economic way. Once it is established for the fluoride crystals, it is an efficient tool for exploring the field of new functional fluorides.  相似文献   

10.
Long-wavelength vertical cavity surface emitting lasers (VCSELs) are considered the best candidate for the future low-cost reliable light sources in fiber communications. However, the absence of high refractive index contrast in InP-lattice-matched materials impeded the development of 1.3–1.5 μm VCSELs. Although wafer fusions provided the alternative approaches to integrate the InP-based gain materials with the GaAs/AlAs materials for their inherent high refractive index contrast, the monolithic InP-based lattice-matched distributed Bragg reflectors (DBRs) are still highly attractive and desirable. In this report, we demonstrate InP/InGaAlAs DBRs with larger refractive index contrast than InP/InGaAsP and InAlAs/InGaAlAs DBRs. The switching between InP and InGaAlAs layers and growth rate control have been done by careful growth interruption technique and accurate in situ optical monitoring in low-pressure metal organic chemical vapor deposition. A 35 pairs 1.55 μm centered InP/InGaAlAs DBRs has the stopband of more than 100 nm and the highest reflectivity of more than 99%. A VCSEL structure incorporating 35 pairs InP/InGaAlAs DBR as the bottom mirror combined with a 2λ thick periodic gain cavity and 10 pairs SiO2/TiO2 top dielectric mirrors was fabricated. The VCSELs lased at 1.56 μm by optical pumping at room temperature with the threshold pumping power of 30 mW.  相似文献   

11.
Optical characteristics of silica glass optical fibers containing Co2+ doped ZnO-Al2O3-SiO2 (ZAS) glass-ceramics prepared by slurry-doping method were investigated. The absorption and emission bands of the fibers were found to be originated from the tetrahedral Co2+ in ZnAl2O4 crystals in ZAS glass-ceramics particles embedded in the core of the fibers. The crystal field strength of the Co2+ ions in the optical fiber was found to be smaller than that of the Co2+ ions in the bulk ZAS glass-ceramics.  相似文献   

12.
The vapor phase epitaxy of thin epilayers of VO2 and V1−xCrxO2 on TiO2 transparent substrates is described. Chemical vapor deposition occurs by reacting a (VOCL3/CrO2Cl2/H2O/H2) mixture at about 800°C using argon as a carrier gas. The preparation of pure VO2 requires special care to make it homogeneously stoichiometric and to obtain steep concentration profiles at the TiO2/VO2 interface. Layers were obtained which had electrical and optical properties comparable to the best bulk crystals grown by other techniques. Homogeneous solid solutions of V1−xCrxO2 epilayers were also grown for the first time in the range o < x < 0.17. Chromium concentration and homogeneity were determined by electron microprobe analysis. The separation coefficient k was also found to vary with x. It is close to unity below x = 0.001 and above this value Cr is incorporated more easily. High quality heteroepitaxial layers (1 cm2 area, 1 to 30 μm thickness) of V1−xCrxO2 have for the first time allowed the measurement of the optical absorption coefficient.  相似文献   

13.
Unclad optical fibers based on high-purity Te-As-Se glasses prepared by chemical and physical methods of purification have been drawn. The optical, thermal and mechanical properties of glasses and fibers were investigated. The minimum optical losses were 0.07 dB/m at 7.3 μm for Te25As40Se35 glass fiber and 0.04 dB/m at 6.7 μm for Te20As30Se50 glass fiber. Sixty five percent of input power of a tunable CO2 laser emitting at 9.3 μm was transmitted through a 1 m long fiber with diameter of 900 μm.  相似文献   

14.
In this study we report first measurements of wavelength-selective infrared-induced materials modification of bulk As2S3 and As2Se3. These materials are currently being considered as candidate materials for infrared optical fiber transmission in the range of 1–10 μm. Our study is aimed at modifying oxygen, hydrogen and carbon impurities bound to chalcogenide constituent elements in the materials to reduce absorption. Tunable infrared radiation from the W.M. Keck Free Electron Laser (FEL) at Vanderbilt was used to excite specific vibrational modes, S–O–H and CHx modes in bulk As2S3 and Se–H, CHx and S–H2 modes in bulk As2Se3. Changes in vibrational mode amplitudes are monitored by measuring the intensity of the Fourier transform infrared (FTIR) spectra before and after irradiation at appropriate wavelengths. By tuning wavelengths to hydrogen vibrational modes, we find evidence that hydrogen is released and/or redistributed athermally. In particular, following irradiation at specific resonant wavelengths, vibrational mode amplitudes as monitored by FTIR associated with CHx are significantly reduced in bulk As2S3 and As2Se3 samples. In As2S3, the changes in CHx modes are reversed by heat treatment at 115°C for 35 min in nitrogen atmosphere.  相似文献   

15.
New multicomponent PbF2–InF3–GaF3 bulk glasses have been investigated. They show lower phonon energy (540 cm−1) in comparison with 580 cm−1 for ZBLAN. Large PbF2 concentration provided glasses with high refractive index up to 1.582 and the viscosity curves revealed an excellent thermal compatibility with ZBLAYN glass. A multimode fiber with a numerical aperture of 0.51, a loss of 0.85 dB/m at 1.3 μm was fabricated using the rotational casting method.  相似文献   

16.
Fibrous barium carbonate (BaCO3/witherite) crystals 50–100 nm in diameter and several microns in length were grown on calcium carbonate (CaCO3) seeds at temperatures as low as 4 °C. The BaCO3 fibers were deposited onto calcite rhombs or CaCO3 films using the polymer-induced liquid-precursor (PILP) process, which was induced with the sodium salt of polyacrylic acid (PAA). The structure and morphology of the resultant fibers were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), and polarized light microscopy (PLM). Fibers were successfully grown on calcite seeds of various morphologies, with a range of barium concentrations, and PAA molecular weight and concentration. Two categories of fibers were grown: straight and twisted. Both types of fibers displayed single-crystalline SAED diffraction patterns, but after examining high-resolution TEM lattice images, it was revealed that the fibers were in fact made up of nanocrystalline domains. We postulate that these nanocrystalline domains are well aligned due to a singular nucleation event (i.e., each fiber propagates from a single nucleation event on the seed crystal) with the nanocrystalline domains resulting from stresses caused by dehydration during crystallization of the highly hydrated precursor phase. These BaCO3 fibers grown on calcite substrates further illustrate the robustness and non-specificity of the PILP process.  相似文献   

17.
Zr---Al metallo-organic compounds (zircoaluminates), having (CH2)4COOH, (CH2)12CH3 and (CH2)2NH2 as the organofunctional groups, were treated preliminary by (1) spray-drying, (2) gelation of addition of 10% NH4OH aqueous solution followed by spray-drying and (3) rotary evaporation under a reduced pressure. After the treatment they were heated in air to prepare ZrO2---Al2O3 composite powders. The IR and DTA profiles for the treated compounds indicated that the procedures modified the structures for the zircoaluminates. The stability of tetragonal ZrO2 for the ZrO2---Al2O3 composite powder were dependent on the modification in the structure for the zircoaluminates. Balloon shaped particles, 0.5–2 μm in diameter, were obtained through procedure (1) and spherical particles, 1–4 μm in diameter, through (2). Tetragonal ZrO2 grains, 0.1–0.2 μm in diameter, were dispersed in the particles when heated at 1400°C.  相似文献   

18.
The nanoindentation technique is used to analyze the depth dependence of the hardness and the reduced elastic modulus of bulk glasses and glass wool fibers (4-12 μm in diameter) of calcium aluminosilicate composition. In spite of the fiber geometry and the delicate sample mounting-technique, nanoindentation proves to be a relatively accurate method that provides reproducible data for both hardness (H) and reduced elastic modulus (Er) of thin glass fibers. It is found that H and Er are generally lower for the fiber than for the bulk sample. Within a given fiber, both H and Er are approximately constant with increasing indentation depth. However, both of these parameters decrease with diminishing fiber diameter. This trend is attributed to an increase of the free volume of the fibers with decreasing fiber diameter, i.e. to an increase of the fictive temperature.  相似文献   

19.
The growth and intersubband optical properties of high quality heavily doped p-type GaAs/AlGaAs multiple quantum well (MQW) structures are reported. The MQWs were fabricated by the atmospheric pressure metalorganic vapor phase epitaxy process using liquid CCl4 to dope the wells with C acceptors (Na ≈ 2 × 1019 cm−3). A constant growth temperature was maintained for the entire structure while different V/III ratios were used for the well and barrier regions. By this process it is possible to achieve both high C doping densities in the wells and to simultaneously obtain good quality AlGaAs barriers. Fourier transform infrared spectroscopy measurements on heavily doped 10-period MQW structures reveal a new absorption peak at 2 μm with an effective normal incidence absorption coefficient of 4000 cm−1. Photocurrent measurements on mesa-shaped diodes show a corresponding peak at 2.1 μm. The photodiodes exhibit a symmetrical current-voltage characteristic and a low dark current, which are indicative of a high quality MQW structure and a well-controlled C doping profile. The 2 μm absorption represents the shortest wavelength ever reported for any GaAs/AlGaAs or InGaAs/AlGaAs MQW structure and should be very useful for implementing multicolor infrared photodetectors.  相似文献   

20.
The μ-PD method originally developed for oxide crystals has been modified and applied for filamentary silicon crystal growth. Our main modification of μ-PD method is concerned with an arrangement of melt permeable feeder which is inserted into the nozzle. The feeder finishes by a sharp tip the diameter of which (is almost the same as that of the desired semiconductor fiber, i.e., less than 150 μm. Silicon fibers were grown from the small liquid pool at the end of the feeder. Three types of crucible-die arrangement were designed and tested. The best results were obtained with the help of inclined insert made of graphite fibers because of its ability to quench oscillations and longer operation life. Fiber crystals, 100 μm in diameter and 70 mm in length, have been grown successfully. Small meniscus stability, operating limits of μ-PD method and silicon carbide formation during the growth process are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号