首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
本文将Reissner-Mindlin板理论推广到空间曲壳结构,可称为Reissner-Mindlin型壳理论。从这种理论出发,可直接导出C(0)连续的壳体单元,即考虑横向剪切变型的影向的壳体单元,这种单元在国外已被广泛地采用,为克服这种单元在应用中所出现的剪切和膜的锁制现象同时又防止出现任何零能模式,作者提出了一种采用假定应变的新的壳单元公式,并对这种单元进行了广泛的数值试验,结果表明这种单元具有较高的精度和良好的性能。  相似文献   

2.
提出了一个用于橡胶材料分析的弱变分方程,基于一个可压缩Neo—Hookean模型,将EAS模式和杂交元法有机地结合起来,推导了一个高效、稳定的杂交应变——EAS固体壳单元,通过巧妙地选择应交插值函数和本文中提出的一个精化措施,克服了橡胶材料所表现出的大应变超弹性本构为杂交元正交化法的实施所带来的困难,保证了整个单元列式都仅采用低阶高斯积分,显著提高了计算效率,确保橡胶材料不可压缩性计算的顺利进行,并克服了固体壳元的厚度自锁问题。  相似文献   

3.
I-IntroductionInrecentyearsmuchresearchefforthasbeenspentonthedevel0pmentofreliableandefficientplateelementsbasedonReissner-Mindlintheory.Adifficultyisthelockingbehaviorexhibitedasl- 0(tisthethicknessoftheplate)forlowerorderc'elements.BasedonTaylorexpendi…  相似文献   

4.
A new 4-node quadrilateral flat shell element is developed for geometrically nonlinear analyses of thin and moderately thick laminated shell structures. The fiat shell element is constructed by combining a quadrilateral area co- ordinate method (QAC) based membrane element AGQ6- II, and a Timoshenko beam function (TBF) method based shear deformable plate bending element ARS-Q12. In order to model folded plates and connect with beam elements, the drilling stiffness is added to the element stiffness matrix based on the mixed variational principle. The transverse shear rigidity matrix, based on the first-order shear deformation theory (FSDT), for the laminated composite plate is evaluated using the transverse equilibrium conditions, while the shear correction factors are not needed. The conventional TBF methods are also modified to efficiently calculate the element stiffness for laminate. The new shell element is extended to large deflection and post-buckling analyses of isotropic and laminated composite shells based on the element independent corotational formulation. Numerical re- sults show that the present shell element has an excellent numerical performance for the test examples, and is applicable to stiffened plates.  相似文献   

5.
推导出一组适用于h型自适应分析的四边形蜕化壳元。对于大多数壳体结构,壳单元的刚度矩阵可分为薄膜、弯曲和剪切三部分。对薄膜部分本文采用杂交应力元方法进行设计,独立假设薄膜应力场以改善其精度;弯曲部分的刚度矩阵则依然由基于位移的应变来获得;而剪切部分则采用假设自然应变的方法来获得能克服薄壳下剪切自锁的新剪应变并用于计算此部...  相似文献   

6.
To demonstrate the solutions of linear and geometrically non-linear analysis of laminated composite plates and shells, the co-rotational non-linear formulation of the shell element is presented. The combinations of an enhanced assumed strain (EAS) in the membrane strains and assumed natural strains (ANS) in the shear strains improve the behavior of 4-node shell element. To secure computational efficiency in the incremental non-linear analysis, the present element uses the form of the resultant forces pre-integrated through the thickness. The transverse shear stiffness of the laminates is defined by an equilibrium approach instead of the shear correction factor. Numerical examples of this study show very good agreement with the references.  相似文献   

7.
The first-order shear deformation moderate rotation shell theory of Schmidt and Reddy [R. Schmidt and J. N. Reddy, J. Appl. Mech. 55, 611–617 (1988)] is used as a basis for the development of finite element models for the analysis of the static, geometrically non-linear response of anisotropic and laminated structures. The incremental, total Lagrangian formulation of the theory is developed, and numerical solutions are obtained by using the isoparametric Lagrangian 9-node and Serendipity 8-node shell finite elements. Various integration schemes (full, selective reduced, and uniformly reduced integration) are applied in order to detect and to overcome the effects of shear and membrane locking on the predicted structural response. A number of sample problems of isotropic, orthotropic, and multi-layered structures are presented to show the accuracy of the present theory. The von Kármán-type first-order shear deformation shell theory and continuum 2D theory are used for comparative analyses.  相似文献   

8.
This paper is concerned with the direct boundary integral approach to isotropic spherical shell model with the transverse shear deformability taken into account. The validity of the formulation has been proved by example results including comparison with analytical solutions and classical thin shell theory.project supported by State Natural Science Foundation.  相似文献   

9.
首先基于Reissner-Mindlin理论进行了三维壳体等几何分析,而后基于此对三维壳体进行形状优化,提出了形状优化中灵敏度的全解析计算方法,包括位移应变阵、雅克比阵和刚度阵等相对控制顶点位置的灵敏度解析计算公式;通过实例验证了壳体等几何分析和灵敏度全解析计算方法的有效性。与传统的基于网格的灵敏度半解析计算方法相比,基于NURBS的灵敏度全解析计算具有精确、计算效率高的特点,且可以避免优化迭代中的网格畸变。  相似文献   

10.
The implementation of the conforming radial point interpolation method (CRPIM) for spatial thick shell structures is presented in this paper. The formulation of the discrete system equations is derived from a stress-resultant geometrically exact theory of shear flexible shells based on the Cosserat surface. A discrete singularity-free mapping between the five degrees of freedom of the Cosserat surface and the normal formulation with six degrees of freedom is constructed by exploiting the geometry connection between the orthogonal group and the unit sphere. A radial basis function is used in both the construction of shape functions based on arbitrarily distributed nodes as well as in the surface approximation of general spatial shell geometries. The major advantage of the CRPIM is that the shape functions possess a delta function property and the interpolation function obtained passes through all the scattered points in the influence domain. Thus, essential boundary conditions can be easily imposed, as in finite element method. A range of shape parameters is studied to examine the performance of CRPIM for shells, and optimal values are proposed. The phenomena of shear locking and membrane locking are illustrated by presenting the membrane and shear energies as fractions of the total energy. Several benchmark problems for shells are analyzed to demonstrate the validity and efficiency of the present CRPIM. The convergence rate of the results using a Gaussian (EXP) radial basis is relatively high compared to those using a multi-quadric (MQ) radial basis for the shell problems.  相似文献   

11.
基于宏观三角形分区平板壳单元的非线性有限元分析   总被引:1,自引:0,他引:1  
曹杨  李杰 《计算力学学报》2008,25(2):139-143
针对剪切闭锁效应,本文研究了一种基于假设自然应变方法的宏观三角形分区平板壳单元。利用通用有限元软件ABAQUS所提供的用户自定义单元(UEL)和用户自定义材料(UMAT)子程序,本文将宏观三角形分区平板壳单元和基于损伤能释放率的混凝土弹塑性损伤本构模型成功嵌入了ABAQUS的主分析模块。经典试验McNeice双向混凝土板的数值模拟结果表明:宏观三角形分区平板壳单元对于描述板壳结构的非线性损伤行为是行之有效的。  相似文献   

12.
带旋转自由度C^0类任意四边形板(壳)单元   总被引:5,自引:0,他引:5  
朱菊芬  郑罡 《计算力学学报》2000,17(3):287-292300
基于Reissner-Mindilin板弯曲理论和Von-Karman大挠度理论,采用单元域内和边界位移插值一致性的概念,将四节点等参弯曲单元与Allman膜变形二次插值模式相结合,对层合板壳的大挠度分析提供了一种实用的带旋转自由度的四节点C^0类板单元。大量算例表明:该单元对板壳结构的线性强度、稳定性和后屈曲分析都表现出良好的收敛性和足够的工程精度。  相似文献   

13.
In this paper, a theory of thick-walled shells is established by means of Hellinger-Reissner's variational principle, with displacement and stress assumptions. The displacements are expanded into power series of the thickness coordinate. Only the first four and the first three terms are used for the displacements parallel and normal to the middle surface respectively. The normal extruding and transverse shear stresses are assumed to bt, cubic polynomials and to satLyfy the boundary stress conditions on the outer and inner surfaces of the shell. The governing equations and boundary conditions are derived by means of variational principle. As an example, a thick-walled cylindrical.shell is disscussed with the theory proposed. Furthermore, a photoelastic experiment has been carried out, and the results are in fair agreement with the computations.  相似文献   

14.
A mathematical model to quantify the variation of the displacement field through the thickness of a laminated shell has been proposed previously by Beakou and Touratier (1993). Transverse shear deformations were taken into account and thickness correction factors were not required but the analysis was restricted to shallow shells (i.e. the principal radii of shell curvature were both assumed to be large relative to the shell thickness). In this technical note the later restriction is removed by replacing the Cartesian coordinate form of elasticity tensor with the more general curvilinear form. The modified laminate level model coefficients are derived from the expressions for the curvilinear transverse shear stress components by: applying zero transverse shear stress boundary conditions at the top and bottom of the shell and enforcing interlayer layer continuity at each internal lamina interface. The purpose of this model enhancement is to facilitate the development of a degenerate finite element type that can be used to compute the deformation of a non-shallow laminated shell.  相似文献   

15.
Buckling and postbuckling analysis is presented for microtubules subjected to torsion in thermal environments. The microtubule is modeled as a nonlocal shear deformable cylindrical shell which contains small scale effects. The governing equations are based on a higher order shear deformation theory. The thermal effects are included and the material properties are assumed to be temperature-dependent. The small scale parameter e0a is estimated by matching the buckling twist angle of microtubules obtained from the nonlocal shear deformable shell model with the existing result. The results show that the small scale effect plays an important role in the postbuckling of microtubules.  相似文献   

16.
有限元法分析轴对称壳体时,常需区分薄壳和厚壳并选用不同的单元,给计算带来不便.为此,通过对现有的轴对称壳体单元的研究,基于加权残值法,将广义协调条件引入剪应变场,构造了一种挠度和转角各自独立的新型轴对称曲壳单元.算例结果表明,新单元具有很高的精度,既可用于厚壳,也可用于薄壳.该单元可用于轴对称壳体结构的计算分析.  相似文献   

17.
A general geometrically exact nonlinear theory for the dynamics of laminated plates and shells under-going large-rotation and small-strain vibrations in three-dimensional space is presented. The theory fully accounts for geometric nonlinearities by using the new concepts of local displacements and local engineering stress and strain measures, a new interpretation and manipulation of the virtual local rotations, an exact coordinate transformation, and the extended Hamilton principle. Moreover, the model accounts for shear coupling effects, continuity of interlaminar shear stresses, free shear-stress conditions on the bonding surfaces, and extensionality. Because the only differences among different plates and shells are the initial curvatures of the coordinates used in the modeling and all possible initial curvatures are included in the formulation, the theory is valid for any plate or shell geometry and contains most of the existing nonlinear and shear-deformable plate and shell theories as special cases. Five fully nonlinear partial-differential equations and corresponding boundary and corner conditions are obtained, which describe the extension-extension-bending-shear-shear vibrations of general laminated two-dimensional structures and display linear elastic and nonlinear geometric coupling among all motions. Moreover, the energy and Newtonian formulations are completely correlated in the theory.  相似文献   

18.
In the present paper, the ELF (element-based Lagrangian formulation) 9-node ANS (assumed natural strain) shell element was combined with the spring element for geometrically non-linear analysis of plates and shells sustained by arbitrary elastic edge supports that are subjected to variation in loading.This particular spring element serves as tool for modeling an arbitrary elastic edge support with 6 DOF (degrees of freedom). The elastic edge support was modeled by combining different spring models. The ANS method was used to overcome shear and membrane locking problems inherent in some thin plate and shell problems. In the formulation of the ELF characteristic arrays, the expression of element strains was adopted in the framework of the element natural coordinates. The non-linear analysis results of idealized edge supports were validated against the reference solutions available in the literature. As a result of the numerical test, the combination of the ELF 9-node shell element and spring element shows an exceptional performance for non-linear analysis of plates and shells under elastic edge supports.  相似文献   

19.
The phenomena associated with thermal snap-through and snap-buckling of symmetrically layered shallow shells of polygonal planform are studied by means of a two-degree-of-freedom model derived from a Ritz–Galerkin approximation. The composite structure is homogenized considering perfect bond and the kinematic assumptions of the first order shear deformation theory. The simply supported shell edges are assumed to be prevented from in-plane motions. The geometrically non-linear, quasi-static equilibrium conditions are derived according to the von Kármán–Tsien theory and simplified by the Berger-approximation. A unifying non-dimensional formulation of the elastic stability analysis is presented that turns out to be independent of the special polygonal planform of the simply supported shallow shell.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号