首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The preparation of nano-sized BaCeO3 powder using starch as a polymerization agent is described herein. Phase evolution during the decomposition process of a (BaCe)-gel was monitored by XRD. A phase-pure nano-sized BaCeO3 powder was obtained after calcining of the (BaCe)-gel at 920 °C. The resulting powder has a specific surface area of 15.4 m2/g. TEM investigations reveal particles mainly in the size range of 30 to 65 nm. The shrinkage and sintering behavior of resulting powder compacts were studied in comparison to a coarse-grained mixed-oxide BaCeO3 powder (SBET = 2.1 m2/g). Dilatometric measurements show that the beginning of shrinkage of compacts from the nano-sized powder is downshifted by 300 °C compared to mixed-oxide powder. Compacts from the nano-sized powder reach a relative density of 91% after sintering at 1450 °C for 10 h.  相似文献   

2.
Dense nanocrystalline BaTiO3 ceramics with uniform grain sizes of 30 nm was obtained by pressure assisted sintering. The phase transitions were investigated by Raman scattering at temperatures ranging from −190 to 200 °C. With increasing temperature, similar to 3 μm BaTiO3 normal ceramics, the successive phase transitions from rhombohedral to orthorhombic, orthorhombic to tetragonal, tetragonal to cubic were also observed in 30 nm BaTiO3 ceramics. Especially, the coexistence of ferroelectric tetragonal and orthorhombic phases was found at room temperature. The ferroelectric behavior was further characterized by P-E hysteresis loop. The experimental results indicate that the critical grain size of the disappearance of ferroelectricity in nanocrystalline BaTiO3 ceramics fabricated by pressure assisted sintering is below 30 nm.  相似文献   

3.
The paper reports on both the characteristics of ultrafine silicon nitride powder produced by plasma synthesis and the microstructure and properties of the relative sintered material. The powder, already containing yttria and alumina as sintering aids, has a bimodal particle size distribution and it is partly amorphous. The chemical composition and morphology of the particles are shown. Yttria and alumina were not found in separate particles but the elements constituting them (i.e., Y, Al, O) are either in solid solutions in the crystalline particles or dispersed within the amorphous portion of the powder. Dense materials were obtained by pressureless sintering at 1750 °C. Microstructure and composition of silicon nitride grains and of grain boundary phases are analyzed and discussed. When compared to a micro-sized Si3N4, nanoindentation tests clearly revealed the inverse Hall Petch relation. The nanosize Si3N4 shows a Young’s modulus which is almost independent on the peak load. PACS 81.05.J,M; 81.40; 81.05.Y; 81.05.J; 46.30.P  相似文献   

4.
Indium tin oxide (ITO) and titanium dioxide (TiO2) single layer and double layer ITO/TiO2 films were prepared using reactive pulsed laser ablation deposition (RPLAD) with an ArF excimer laser. The films were deposited on SiO2 substrates heated at 200 and 400 °C. ITO and TiO2 films with uniform thicknesses of about 400 and 800 nm, respectively, over large areas were prepared. X-ray diffraction (XRD) analysis revealed that the ITO films are formed of highly orientated nanocrystals with an average particle size of 10-15 nm. Atomic force microscopy (AFM) observations indicate rough ITO films surfaces with average roughness of 26-30 nm. Pores were also observed. TiO2 films deposited on the prepared ITO films result less crystalline. Annealing at 300 and 500 °C for three consecutive hours promoted formation of TiO2 anatase phase, with crystal size of ∼6-7 nm. From the scanning transmission electron microscope (STEM) images, it can be seen that the TiO2 films deposited onto the prepared ITO films present a relatively high pore sizes with an average pore diameter of ∼40 nm and excellent uniformity. In addition, STEM cross-sectional analysis of our films showed a columnar structure but no evidence of voids in the structure. Therefore, films exhibited large surface area, well suited for dye-sensitized solar cells (DSSC) applications.  相似文献   

5.
Sintering occurs when packed particles are heated to a temperature where there is sufficient atomic motion to grow bonds between the particles. The conditions that induce sintering depend on the material, its melting temperature, particle size, and a host of processing variables. It is common for sintering to produce a dimensional change, typically shrinkage, where the powder compact densifies, leading to significant strengthening. Microstructure coarsening is inherent to sintering, most evident as grain growth, but it is common for pore growth to occur as density increases. During coarsening, the grain structure converges to a self-similar character seen in both the grain shape distribution and grain size distribution. Coarsening behavior during sintering conforms to classic grain growth kinetics, modified to reflect the evolving microstructure. These modifications involve the grain boundary coverage due to pores, liquid films, or second phases and the altered grain boundary mobility due to these phases. The mass transport rates associated with each of these interfaces are different, with different temperature and composition dependencies. Hence, the coarsening rate during sintering is not constant, but changes with the evolving microstructure. Core aspects treated in this review include models for coarsening, grain shape, grain size distribution, and how pores, liquids, dispersoids, and other phases determine microstructure coarsening during sintering.  相似文献   

6.
Co (Ni or Cu)-MCM-41 mesoporous molecular sieves with different amount of metal were synthesized by using cetyltrimethyl ammonium bromide as a template and by a novel microwave irradiation method. These samples were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and N2 physical adsorption. The experimental results show that Co (Ni or Cu)-MCM-41 mesoporous molecular sieves were successfully synthesized. When the as-synthesized samples were calcined at 550 °C for 10 h, the template was effectively removed. Under microwave irradiation condition, Co-MCM-41 mesoporous molecular sieves have specific surface areas in a range of 745.7-1188.8 m2/g and average pore sizes in a range of 2.46-2.75 nm; Ni-MCM-41 mesoporous molecular sieves have specific surface areas in a range of 625.8-1161.3 m2/g and average pore sizes of ca. 2.7 nm; Cu-MCM-41 mesoporous molecular sieves have specific surface areas in a range of 601.6-1142.9 m2/g and average pore sizes in a range of 2.46-2.76 nm. On the other hand, with increasing the introduced metal amount, the specific surface area and pore volume of the synthesized Co (Ni or Cu)-MCM-41 mesoporous molecular sieves became small, and the mesoporous ordering of the samples became poor. Under the comparable synthesis conditions, the synthesized Co-MCM-41 mesoporous molecular sieve has a bigger specific surface area and a more uniform pore distribution as compared with the synthesized Ni-MCM-41and Cu-MCM-41 mesoporous molecular sieves.  相似文献   

7.
We report a new synthesis route for preparation of single-domain barium hexaferrite (BaFe12O19) particles with high saturation magnetization. Nitric acid, known as a good oxidizer, is used as a mixing medium during the synthesis. It is shown that formation of BaFe12O19 phase starts at 800 °C, which is considerably lower than the typical ceramic process and develops with increasing temperature. Both magnetization measurements and scanning electron microscope micrographs reveal that the particles are single domain up to 1000 °C at which the highest coercive field of 3.6 kOe was obtained. The best saturation magnetization of ≈60 emu/g at 1.5 T was achieved by sintering for 2 h at 1200 °C. Annealing at temperatures higher than 1000 °C increased the saturation magnetization, on the other hand, decreased the coercive field which was due to the formation of multi-domain particles with larger grain sizes. It is shown that the best sintering to obtain fine particles of BaFe12O19 occurs at temperatures 900-1000 °C. Finally, magnetic interactions between the hard BaFe12O19 phase and impurity phases were investigated using the Stoner-Wohlfarth model.  相似文献   

8.
The intercorrelation of tungsten powder properties, such as grain size, distribution and morphology, and porous matrix parameters with electron emission capability and longevity of Ba dispenser cathodes has been investigated for the different grain morphologies. It is shown that a fully cleaning step of the tungsten powder is so necessary that the tungsten powder will be reduction of oxide in hydrogen atmosphere above 700 °C. The porosity of the tungsten matrix distributes more even and the closed pore is fewer, the average granule size of the tungsten powder distributes more convergent. The porosity of the tungsten matrix and the evaporation of the activator are bigger and the pulse of the cathode is smaller when the granularity is bigger by the analysis of the electronic microscope and diode experiment.  相似文献   

9.
Bulk specimens of Ce0.9Gd0.1O2-δ prepared with powders within a range of specific surface area were sintered in oxidizing, inert, and reducing atmospheres. The aim of this work is to investigate the effects of the sintering atmosphere on the microstructure and grain and grain boundary conductivities of the solid electrolyte. The lattice parameter determined by Rietveld refinement is 0.5420(1) nm, and the microstrain was found negligible in the powder materials. Specimens sintered in the Ar/4 % H2 mixture display larger average grain sizes independent on the particle size of the starting powders. The grain and grain boundary conductivities of specimens sintered under reducing atmosphere are remarkably lower than those sintered under oxidizing and inert atmospheres. The activation energy (~0.90 eV) for total electrical conductivity remains unchanged with both the initial particle size and the sintering atmosphere.  相似文献   

10.
Nd2O3-SiO2 binary oxide was prepared by solgel technique using tetra-ethoxysilane and neodymium nitrate as precursor materials and HCl as a catalyst. The prepared samples were subjected to heat treatment in the temperature range from 600 to 1100 °C for different time duration. Characterization of heat treated samples was carried out by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The effect of sintering temperature and time on structural changes of Nd-doped silica has been discussed. The sample sintered at 1100 °C for 12 h shows the formation of monoclinic Nd2O3 nanocrystallites in silica matrix with average grain size ∼18 nm.  相似文献   

11.
Precipitates of ceria were synthesized by homogeneous precipitation method using cerium nitrate and hexamethylenetetramine at 80°C. The precipitates were ground to fine particles of average size ∼0.7 μm. Circular disks with 10 mm diameter, 2 and 3 mm thickness were prepared from the green compacts by sintering at 1300° C for three different sintering times. Evolution of the pore structures in these specimens with sintering time was investigated by small-angle neutron scattering (SANS). The results show that the peak of the pore size distribution shifts towards the larger size with increasing sintering time although the extent of porosity decreases. This indicates that finer pores are eliminated from the system at a faster rate than the coarser ones as sintering proceeds and some of the finer pores coalesce to form bigger ones.  相似文献   

12.
A sonochemistry-based synthesis method was used to produce nanocrystalline nickel oxide powder with ∼20 nm average crystallite diameter from Ni(OH)2 precursor. Ultrasound waves were applied to the primary solution to intensify the Ni(OH)2 precipitation. Dried precipitates were calcined at 320 °C to form nanocrystalline NiO particles. The morphology of the produced powder was characterized by transmission electron microscopy. Using sonochemical waves resulted in lowering of the size of the nickel oxide crystallites. FT-IR spectroscopy and X-ray diffraction revealed high purity well-crystallized structure of the synthesized powder. Photoluminescence spectroscopy confirmed production of a wide band-gap structure.  相似文献   

13.
In this work, silicon suboxide (SiOx) thin films were deposited using a RF magnetron sputtering system. A thin layer of gold (Au) with a thickness of about 10 nm was sputtered onto the surface of the deposited SiOx films prior to the thermal annealing process at 400 °C, 600 °C, 800 °C and 1000 °C. The optical and structural properties of the samples were studied using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and optical transmission and reflection spectroscopy. SEM analyses demonstrated that the samples annealed at different temperatures produced different Au particle sizes and shapes. SiOx nanowires were found in the sample annealed at 1000 °C. Au particles induce the crystallinity of SiOx thin films in the post-thermal annealing process at different temperatures. These annealed samples produced silicon nanocrystallites with sizes of less than 4 nm, and the Au nanocrystallite sizes were in the range of 7-23 nm. With increased annealing temperature, the bond angle of the Si-O bond increased and the optical energy gap of the thin films decreased. The appearance of broad surface plasmon resonance absorption peaks in the region of 590-740 nm was observed due to the inclusion of Au particles in the samples. The results show that the position and intensity of the surface plasmon resonance peaks can be greatly influenced by the size, shape and distribution of Au particles.  相似文献   

14.
In this work, formation of gold nanoparticles in radio frequency (RF) reactive magnetron co-sputtered Au-SiO2 thin films post annealed at different temperatures in Ar + H2 atmosphere has been investigated. Optical, surface topography, chemical state and crystalline properties of the prepared films were analyzed by using UV-visible spectrophotometry, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and X-ray diffractometry (XRD) techniques, respectively. Optical absorption spectrum of the Au-SiO2 thin films annealed at 800 °C showed one surface plasmon resonance (SPR) absorption peak located at 520 nm relating to gold nanoparticles. According to XPS analysis, it was found that the gold nanoparticles had a tendency to accumulate on surface of the heat-treated films in the metallic state. AFM images showed that the nanoparticles were uniformly distributed on the film surface with grain size of about 30 nm. Using XRD analysis average crystalline size of the Au particles was estimated to about 20 nm.  相似文献   

15.
In order to study the sintering properties of nanosized 90W–7Ni–3Fe composite powder synthesized by spray drying-hydrogen reduction process, melting point and phase changes of nanometer 90W–7Ni–3Fe composite powder whose average particle sizes were in the range from 60 to 91 nm were measured by DTA, and sintering characteristic of specimens was studied at different sintering temperatures and times. Fracture morphology and W grain sizes of sintered specimens were measured by SEM and optical micrograph, respectively. Relative density, tensile strength and elongation of sintered specimens were also measured and analysed. The sintering temperature is lower than 80 °C in comparison traditional 90W–Ni–Fe powder. Mechanical properties are low because of appearance of cavities and vapour due to high oxygen content of nanosized 90W–7Ni–3Fe composite powder during liquid sintering.  相似文献   

16.
In the present work, nano-calcium carbonate powder was prepared by micropore dispersion method with assistance of oleic acid as surfactant. CO2 gas was dispersed into the Ca(OH)2/H2O slurry via a glass micropore-plate with the diameter of micropore about 20 μm. To investigate the effect of oleic acid on the size of CaCO3 particles, different amount of oleic acid was added in Ca(OH)2/H2O slurry at 5 °C and 25 °C, respectively. XRD patterns show that cubic calcite is the only crystalline phase in all cases. ZPA data and TEM photo indicate that the average particle size synthesized at 5 °C without oleic acid is of about 40 nm, slightly smaller than that of prepared at 25 °C, and that the dispersity of sample prepared at 5 °C is better than that of 25 °C. When oleic acid is added in both temperatures, the average particle size decreases a little. FT-IR spectra demonstrate that oleic acid interacts with Ca2+ and carbon-carbon double bond existed on the surface of particle. Consequently, two opposite roles of oleic acid during the process of preparation of nano-CaCO3 were proposed, namely preventing nanoparticles from growing during reaction and making nanoparticles reunite to a certain extent after reaction.  相似文献   

17.
Using (Bi2O3)0.75(Dy2O3)0.25 nano-powder synthesized by reverse titration co-precipitation method as raw material, dense ceramics were sintered by both Spark Plasma Sintering (SPS) and pressureless sintering. According to the predominance area diagram of Bi-O binary system, the sintering conditions under SPS were optimized. (Bi2O3)0.75(Dy2O3)0.25 ceramics with relative density higher than 95% and an average grain size of 20 nm were sintered in only 10 min up to 500 °C. During the pressureless sintering process, the grain growth behavior of (Bi2O3)0.75(Dy2O3)0.25 followed a parabolic trend, expressed as D2 − D02 = Kt, and the apparent activation energy of grain growth was found to be 284 kJ mol− 1. Dense (Bi2O3)0.75(Dy2O3)0.25 ceramics with different grain sizes were obtained, and the effect of grain size on ion conductivity was investigated by impedance spectroscopy. It was shown that the total ion conductivity was not affected by the grain size down to 100 nm, however lower conductivity was measured for the sample with the smallest grain size (20 nm). But, although only the δ phase was evidenced by X-ray diffraction for this sample, a closer inspection by Raman spectroscopy revealed traces of α-Bi2O3.  相似文献   

18.
Mixed manganese-zinc and nickel-zinc ferrites of composition Mn0.2Ni0.8−xZnxFe2O4 where x=0.4x=0.4, 0.5 and 0.6 have been synthesized by the citrate precursor technique. Decomposition of the precursor at temperatures as low as 500 °C gives the ferrite powder. The ferrites have been investigated for their electrical and magnetic properties such as saturation magnetization, initial permeability, Curie temperature, AC-resistivity and dielectric constant as a function of sintering temperature and zinc content. Structural properties such as lattice parameter, grain size and density are also studied. The mixed compositions exhibited higher saturation magnetizations at sintering temperatures as low as 1200 °C. While the Curie temperature decreased with zinc content, the permeability was found to increase. The AC-resistivity ranged from 105–107 Ω cm and decreased with zinc content and sintering temperature. The dielectric constants were lower than those normally reported for the Mn–Zn ferrites. Samples sintered at 1400 °C densified to about 94% of the theoretical density and the grain size was of the order of about 1.5 μm for the samples sintered at 1200 °C and increased subsequently with sintering temperature.  相似文献   

19.
The interparticle magnetic interactions of hematite (α-Fe2O3) nanoparticles were investigated by temperature and magnetic field dependent magnetization curves. The synthesis were done in two steps; milling metallic iron (Fe) powders in pure water (H2O), known as mechanical milling technique, and annealing at 600 °C. The crystal and molecular structure of prepared samples were determined by X-ray powder diffraction (XRD) spectra and Fourier transform infrared (FTIR) spectra results. The average particle sizes and the size distributions were figured out using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The magnetic behaviors of α-Fe2O3 nanoparticles were analyzed with a vibrating sample magnetometer (VSM). As a result of the analysis, it was observed that the prepared α-Fe2O3 nanoparticles did not perform a sharp Morin transition (the characteristic transition of α-Fe2O3) due to lack of unique particle size distribution. However, the transition can be observed in the wide temperature range as “a continuously transition”. Additionally, the effect of interparticle interaction on magnetic behavior was determined from the magnetization versus applied field (σ(M)) curves for 26±2 nm particles, dispersed in sodium oxalate matrix under ratios of 200:1, 300:1, 500:1 and 1000:1. The interparticle interaction fields, recorded at 5 K to avoid the thermal interactions, were found as ∼1082 Oe for 26±2 nm particles.  相似文献   

20.
Ceria-based electrolytes have been widely researched in intermediate-temperature solid oxide fuel cell (SOFC), which might be operated at 500~600 °C. Gd0.1Ce0.9O1.95(GDC10) powders were prepared by a modified chemical co-precipitation process with Gd(NO3)3 and Ce(NO3)3 as precursors, and ammonia and hydrogen peroxide as precipitants. The precursors of GDC10 were fired at 350 °C for 2 h, then the fluorite structure cerias were identified by X-ray diffraction. The powders are well crystallized, with the size about 5 nm and surface area of 148.3 m2/g. Loading 1mol% cobalt oxide as additive, the GDC10 were succeeded to densify at 950 °C by liquid phase sintering mechanism. The grain size of 1CoGDC10 is small, about 100 nm. The electrical conductivity of samples sintered at 950 °C is about 0.01S/cm at 600 °C. The existence of cobalt oxide and smaller grain size of 1CoGDC10 don't affect the electrical conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号