首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bivalent chromium impurity centers in CdF2 and CaF2 crystals are investigated using electron paramagnetic resonance (EPR) in the frequency range 9.3–300 GHz. It is found that Cr2+ ions in the lattices of these crystals occupy cation positions and form [CrF4F4]6? clusters whose magnetic properties at low temperatures are characterized by orthorhombic symmetry. The parameters of the electron Zeeman and ligand interactions of the Cr2+ ion with four fluorine ions in the nearest environment are determined. The initial splittings in the system of spin energy levels of the cluster are measured.  相似文献   

2.
Cubic paramagnetic centers formed by Yb3+ impurity ions in fluorite-type crystals MeF2 (Me = Cd, Ca, Pb) have been investigated using electron paramagnetic resonance, magnetic circular dichroism, magnetic circular polarization of luminescence, Zeeman splitting of optical absorption and luminescence lines, and optical detection of electron paramagnetic resonance. The g factors of the 2Γ7 state in the excited multiplet 2 F 5/2 of Yb3+ ions in Me F2 crystals, the hyperfine interaction constant 171 A (171Yb) for the excited multiplet 2 F 5/2 in the CaF2 crystal, and the energies and symmetry properties of all energy levels of Yb3+ ions in MeF2 crystals are determined. The crystal-field parameters for the crystals under investigation are calculated.  相似文献   

3.
The electron paramagnetic resonance (EPR) spectra of Ce3+ and Nd3+ impurity ions in unoriented powders of the YBa2Cu3O6.13 compound are observed and interpreted for the first time. It is demonstrated that, upon long-term storage of the samples at room temperature, the EPR signals of these ions are masked by the spectral line (with the g factor of approximately 2) associated with the intrinsic magnetic centers due to the significant increase in its intensity.  相似文献   

4.
The defect structures and the electron paramagnetic resonance parameters for the substitutional Mo5+ centers in rutile type SnO2, TiO2 and GeO2 crystals are theoretically investigated from the perturbation formulas of these parameters for a 4d1 ion in rhombically compressed octahedra. The [MoO6]7? clusters suffer the Jahn–Teller effect and transform the ligand octahedra from original elongation on host tetravalent sites to compression in the impurity centers, with additional smaller rhombic (perpendicular) distortions when compared with those in the hosts. The defect structures and the importance of the ligand contributions are discussed.  相似文献   

5.
ENDOR experimental spectra of Gd3+ tetragonal impurity centers in CaF2 and SrF2 crystals were used to determine the superhyperfine interaction (SHFI) constants of the impurity with 19F nuclear spins of its first coordination sphere and the compensator ion. The distances in the Cd3+F9 complex were estimated within the model of isotropic SHFI constants suggested in [1]. An analysis of the data on the SHFI and spin-Hamiltonian constants [2] in terms of the superposition model indicates significant changes in the contributions (due to the Gd3+ mixed states) to these parameters for the tetragonal centers in comparison with the corresponding contributions for the cubic and trigonal centers in the same crystals.  相似文献   

6.
Single crystal of a new organic–inorganic hybrid material [C6H10(NH3)2]3CuBr4.3Br was synthesized by the slow evaporation method at room temperature and characterized by X-ray diffraction, FTIR, Raman spectroscopy, UV–Vis, dielectric measurements, and Hirschfield surface analysis. The title compound crystallizes in trigonal system \( P\overline{3} \).The crystal packing is governed by the N-H…Br and non-classical C-H…Br hydrogen-bonding interactions between the 1, 2-diamoniumcyclohexane cations, the tetrahedral [CuBr4]3? anions, and the isolated ion Br?. Theoretical calculations were performed using density functional theory (DFT) for studying the molecular structure, vibrational spectra, and optical properties of the investigated molecule in the ground state. The optimized geometrical parameters obtained by DFT calculations are in good agreement with single crystal XRD data. The optical properties were investigated by optical absorption and show two bands at 260 and 305 nm.  相似文献   

7.
CaF2 crystals doped with Yb3+ ions have been studied by electron paramagnetic resonance (EPR) and optical spectroscopy. EPR spectra of paramagnetic centers (PCs) for cubic (Tc) and tetragonal (Ttet) symmetries were identified. Empirical energy level diagrams were established and crystal field parameters were determined. Information on the CaF2∶Yb3+ phonon spectra was obtained from the electron-vibrational structure of the optical spectra. The crystal field parameters were used to analyze the crystal lattice distortions in the vicinity of the Yb3+ ion. Within the framework of a superposition model, it is established that four F ions located symmetrically with respect to the fourfold axis from the side of the ion-compensator approach the impurity ion and deviate from the PC axis. The second set of four fluorine ions also approaches the Yb3+ ion and the PC axis. The ion-compensator F also approaches considerably the impurity ion.  相似文献   

8.
It is discovered that the electron paramagnetic resonance (EPR) spectrum of the doubly charged copper centers occurs in single crystals of Pb5Ge3O11 doped with gadolinium or iron after annealing in an atmosphere containing chlorine and bromine. Similar annealing of the crystals doped with copper in a chlorine and fluorine atmosphere leads to redistribution of the intensities of the EPR spectra of two types of Cu2+ centers. The influence of annealing on the ongoing intensity of spectra of the dimeric triclinic centers Fe3+–A, Gd3+–A (where A represent Cl?, Br?, O2?, F?) was the subject of this research. Consideration is given to the mechanisms for changing the charge state and association of copper center with defects.  相似文献   

9.
Significant differences in the manifestation of spin-crossover properties of the mesogen compounds [FeL 2]X with oxysalicylidene-N′-ethyl-N-ethylenediamine ligands L and anions X = PF6 and SCH have been found by means of electron paramagnetic resonance. The electron paramagnetic resonance data and the quantum-chemical calculation within the density functional theory enables us to establish that the observed specific features are associated with the incorporation of the SCH ion into the first coordination sphere of the Fe(III) ion. The role of the transition of the material to the liquid-state phase in the formation of a low-dimensional (two-dimensional) structure with stronger intermolecular interactions has been revealed.  相似文献   

10.
The analytical expressions for spin-Hamiltonian parameters of Jahn-Teller paramagnetic centres [AgF2F6]6? in fluorite crystals are deduced. Comparison with the experimental EPR data for CdF2, CaF2 and SrF2 yields information about the local structure of centres [AgF2F6]6?. It is found that two Ag2+-F? bonds of the centre (along the 〈111〉 direction) are shorter than the rest six bonds by factor 1.1. Euler angles of six non-axial fluorines are almost the same as those in the undistorted fluorite structure.  相似文献   

11.
The Zeeman effect in the 7 F 65 D 4 absorption band of the Tb3+ ion in the paramagnetic garnets Tb3Ga5O12 and Tb3Al5O12 was studied. The field dependences of the Zeeman splitting of some absorption lines are found to exhibit unusual behavior: as the magnetic field increases, the band splitting decreases rather than increases. Symmetry analysis relates these lines to 4f → 4f electron transitions of the doublet-quasi-doublet or quasi-doublet-doublet type, for which the field dependences of the splitting differ radically from the well-known field dependences of the Zeeman splitting for quasi-doublet-quasi-doublet or quasi-doublet-singlet transitions in a longitudinal magnetic field.  相似文献   

12.
The local magnetic and valence states of impurity iron ions in the rhombohedral La0.75Sr0.25Co0.98 57Fe0.02O3 perovskite were studied using Mössbauer spectroscopy in the temperature range 87–293 K. The Mössbauer spectra are described by a single doublet at 215–293 K. The spectra contained a paramagnetic and a ferromagnetic component at 180–212 K and only a broad ferromagnetic sextet at T < 180 K. The results of the studies showed that, over the temperature range 87–295 K, the iron ions are in a single (tetrahedral) state with a valence of +3. In the temperature range 180–212 K, two magnetic states of Fe3+ ions were observed, one of which is in magnetically ordered microregions and the other, in paramagnetic microregions; these states are due to atomic heterogeneity. In the magnetically ordered microregions in the temperature range 87–212 K, the magnetic state of the iron ions is described well by a single state with an average spin S = 1.4 ± 0.2 and a magnetic moment μ(Fe) = 2.6 ± 0.4μ B .  相似文献   

13.
The polarized spectra of absorption and magnetic circular dichroism in a TmAl3(BO3)4 single crystal are studied in the region of 3 H 63 F 4, 3 H 63 F 3, and 3 H 63 F 2 electronic transitions in the Tm3+ ion. The structure of the spectra is interpreted qualitatively. It is shown that the magnetic circular dichroism of the 3 H 63 F 4 transition is determined by the contribution from the splitting of the ground state, whereas the magnetic circular dichroism of the 3 H 63 F 3 transition is governed by the contribution from the splitting of an excited state in a trigonal crystal field.  相似文献   

14.
The behavior of de Haas-van Alphen oscillations in the quasi-2D organic metal (ET)8[Hg4Cl12(C6H5Cl)2] was studied in detail. The section of the Fermi surface of this metal is a two-dimensional network of magnetic breakdown orbits. Only two frequencies, which corresponded to allowed closed orbits, FA and FMB, were detected. This is in agreement with the earlier studies of Shubnikov-de Haas oscillations in this metal. The reason for the absence of other allowed frequencies remains unclear. The angular dependences of the amplitudes of FA and FMB oscillations contain a series of “spin zeros.” An analysis of their positions led us to suggest that many-particle interactions were weakened in (ET)8[Hg4Cl12(C6H5Cl)2].  相似文献   

15.
The structural, elastic, magnetic, and magnetoelectric properties of the CaBaCo4O7 multiferroic are experimentally studied and compared with the properties of the related YBaCo4O7 cobaltite, where Y3+ ions substitute for Ca2+ ions. Unlike the frustrated YBaCo4O7 magnet, the softening of Young’s modulus and the hysteresis in the ΔE(T)/E 0 curve of ferrimagnetic CaBaCo4O7 in the paramagnetic region are weak, and the anomaly during the magnetic transition increases by almost an order of magnitude. This difference can point to different characters of the development of a long-range magnetic order in these two cobaltites. The distortion of the crystal structure that removes the frustrations of exchange interactions is found to correlate with the magnetic behavior of the cobaltites under study. The magnetization curves of the Ca cobaltite have two steps below 15 K, which can point to the presence of a metastable state in a high magnetic field. The study of the longitudinal and transverse magnetoelectric effects in a pulsed magnetic field demonstrates that their magnitudes are maximal near T C and change their character from linear to quadratic during passage through this temperature.  相似文献   

16.
The electron paramagnetic resonance (EPR) spectra of mixed crystals (BaF2)1?x? y(LaF3)x(CeF3)y (y = 0.001 = 0.1%, x = 0–0.02) are investigated in a magnetic field H‖C4 at a frequency of 9.5 GHz. The angular dependence of the EPR spectrum is measured for the sample with x = 0.02. The lines attributed to Ce3+ impurity centers with tetragonal symmetry and g factors (g = 0.75, g = 2.4) close to those measured for the KY3F10: Ce3+ compound are separated in the complex EPR spectrum. The assumption is made that the aforementioned impurity centers are cubooctahedral clusters of the La6F37 type in which one of the La3+ ions is replaced by the Ce3+ ion.  相似文献   

17.
18.
The ferrimagnetic compounds Ca(CuxMn3?x)Mn4O12 of the double distorted perovskites AC3B4O12 family exhibit a rapid increase of the ferromagnetic component in magnetization at partial substitution of square coordinated (Mn3+)C for (Cu2+)C. In the transport properties, this is seen as a change of the semiconducting type of resistivity for the metallic one. The evolution of magnetic properties of Ca(CuxMn3?x)Mn4O12 is driven by strong antiferromagnetic exchange interaction of (Cu2+)C with (Mn3+/Mn4+)B coordinated octahedra. The competing interactions of (Mn3+)C with (Mn3+/Mn4+)B lead to the formation of noncollinear magnetic structures that can be aligned by magnetic fields.  相似文献   

19.
20.
The spectra of magnetic circular dichroism in the range of the 7 F 65 D 4 absorption band and the spectra of magnetic circular polarization of luminescence in the range of the 5 D 47 F 5 band in the terbium-gallium garnet Tb3Ga5O12 are studied at a temperature of 80 K. The optical transitions between the Stark sublevels of the 7 F 6, 7 F 5, and 5 D 4 multiplets are identified based on the analysis of the magneto-optical and optical spectra. It is shown that the experimentally determined symmetry and energy of the Stark sublevels of these multiplets confirm the results of numerical calculations of the energy spectrum of the Tb3+ rare-earth ion in terbium-gallium garnet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号