首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TiO2 was produced by the sol-gel method with the addition of polyethyleneglycol (PEG) to study the effects of the molecular weight and the addition percentage of PEG. Bisphenol A (BPA) degradation rate constants were highest as 3.07, 4.02 and 4.23 h−1 at PEG addition percentages of 10%, 5% and 0.5%. After 12 h reaction, the total organic carbon (TOC) reductions in UV/TiO2, UV/TiO2/PEG(200, 10%), UV/TiO2/PEG(600, 5%) and UV/TiO2/PEG(3500, 0.5%) systems were 44%, 24%, 19% and 23%, in order. The results demonstrated that adding an appropriate percentage of PEG to the TiO2 preparation processes increased the BPA degradation and TOC reduction.  相似文献   

2.
ZrO2 nanoparticles were synthesized through arc discharge of zirconium electrodes in deionized (DI) water. X-ray diffraction (XRD) analysis of the as prepared nanoparticles indicates formation a mixture of nanocrystalline ZrO2 monoclinic and tetragonal phase structures. Transmission electron microscopy (TEM) images illustrate spherical ZrO2 nanoparticles with 7–30 nm diameter range, which were formed during the discharge process with 10 A arc current. The average particle size was found to increase with the increasing arc current. X-ray photoelectron spectroscopy (XPS) analysis confirms formation of ZrO2 at the surface of the nanoparticles. Surface area of the sample prepared at 10 A arc current, measured by BET analysis, was 44 m2/g. Photodegradation of Rhodamine B (Rh. B) shows that the prepared samples at lower currents have a higher photocatalytic activity due to larger surface area and smaller particle size.  相似文献   

3.
Nanocrystalline mesoporous TiO2 was synthesized by hydrothermal method using titanium butoxide as starting material. XRD, SEM, and TEM analyses revealed that the synthesized TiO2 had anatase structure with crystalline size of about 8 nm. Moreover, the synthesized titania possessed a narrow pore size distribution with average pore diameter and high specific surface area of 215 m2/g. The photocatalytic activity of synthesized TiO2 was evaluated with photocatalytic H2 production from water-splitting reaction. The photocatalytic activity of synthesized TiO2 treated with appropriate calcination temperature was considerably higher than that of commercial TiO2 (Ishihara ST-01). The utilization of mesoporous TiO2 photocatalyst with high crystallinity of anatase phase promoted great H2 production. Furthermore, the reaction temperature significantly influences the water-splitting reaction.  相似文献   

4.
Bimodal mesoporous TiO2 microspheres with high photocatalytic activity were prepared by a hydrothermal method using titanium sulfate as precursor in the presence of urea. The results indicate that all prepared samples show bimodal pore-size distributions in the mesoporous region: smaller intra-aggregated pores with peak pore diameter of ca. 2 nm and larger inter-aggregated pores with peak pore diameter of ca. 12.5 nm. The molar ratio of urea to Ti(SO4)2 (Ru) has an obvious influence on the morphology, microstructure and photocatalytic activity of TiO2. With increasing Ru, specific surface areas and porosity increase, contrarily, the crystallite size and relative anatase crystallinity decrease. The photocatalytic activity first increases with Ru. At Ru = 2.0, the photocatalytic activity reaches the highest and is obviously higher than that of Degussa P25. With further increasing Ru, the photocatalytic activity decreases. The formation rate of hydroxyl radicals during photocatalysis has a positive correlation with the photocatalytic activity.  相似文献   

5.
The photolytic and photocatalytic degradation of the copolymers poly(methyl methacrylate-co-butyl methacrylate) (MMA-BMA), poly(methyl methacrylate-co-ethyl acrylate) (MMA-EA) and poly(methyl methacrylate-co-methacrylic acid) (MMA-MAA) have been carried out in solution in the presence of solution combustion synthesized TiO2 (CS TiO2) and commercial Degussa P-25 TiO2 (DP 25). The degradation rates of the copolymers were compared with the respective homopolymers. The copolymers and the homopolymers degraded randomly along the chain. The degradation rate was determined using continuous distribution kinetics. For all the polymers, CS TiO2 exhibited superior photo-activity compared to the uncatalysed and DP 25 systems, owing to its high surface hydroxyl content and high specific surface area. The time evolution of the hydroxyl and hydroperoxide stretching vibration in the Fourier transform-infrared (FT-IR) spectra of the copolymers indicated that the degradation rate follows the order MMA-MAA > MMA-EA > MMA-BMA. The same order is observed for the rate coefficients of photocatalytic degradation. The photodegradation rate coefficients were compared with the activation energy of pyrolytic degradation. In degradation by pyrolysis, it was observed that MMA-BMA was the least stable followed by MMA-EA and MMA-MAA. The observed contrast in the order of thermal stability compared to the photo-stability of these copolymers was attributed to the two different mechanisms governing the scission of the polymer and the evolution of the products.  相似文献   

6.
A series of dye-modified TiO2 photocatalysts were synthesized using dye Chrysoidine G (CG), tolylene-2,4-diisocyanate (TDI), and commercial TiO2 (Degussa P25) as starting materials. TDI was used as a bridging molecule whose two -NCO groups reacted with Ti-OH of TiO2 and -NH2 groups of CG, respectively. As a result, special organic complexes were formed on the TiO2 surface via stable π-conjugated chemical bonds between TiO2 and dye molecules, confirmed by FT-IR, XPS, and UV-vis spectra. Due to the existence of π-conjugated surface organic complexes, the as-synthesized photocatalysts showed a great improvement in visible absorption (400-550 nm). Methylene blue, as a photodegradation target, was used to evaluate the photocatalytic performance, and the dye-modified TiO2 exhibited much better activity under the visible light irradiation than bare TiO2.  相似文献   

7.
This investigation compares the photodegradation performance of C.I. Reactive Red 2 (RR2) in single- and coupled-photocatalyst systems. The photocatalysts were produced via the sol-gel method. PEG and Pt addition increases the decolorization rate (1.6–2.12 h−1), the amount of sulfate released and the DOC reduction percentage in coupled photocatalyst systems the cause of PEG improving the homogeneity of the final product and incorporating Pt into the lattice reduced the band gap of photocatalysts.  相似文献   

8.
In this work the efficiency and physicochemical details of a thin film produced by help of a microwave assisted sol gel technique is compared to different commercial powders (Degussa P25 and Hombikat UV100) deposited on glass substrates. Furthermore, a supercritical produced TiO2 powder (SC 134) was included in the comparison.The prepared TiO2 films were characterized using XRD, XPS, AFM, DSC and DLS. The photocatalytic activity was determined using stearic acid as a model compound. Investigation of the prepared films showed that the Degussa P25 film and the sol–gel film were the most photocatalytic active films. The activity of the films was found to be related to the crystallinity of the TiO2 film and the amount of surface area and surface hydroxyl groups. Based on the XPS investigation of the films before and after UV irradiation it was suggested that the photocatalytic destruction of organic matter on TiO2 films proceeds partly through formation of hydroxyl radicals which are formed from surface hydroxyl groups created by interactions between adsorbed water and vacancies on the TiO2 surface. Furthermore a correlation between the amount of OH groups on the surface of the different TiO2 films and the photocatalytic activity was found.  相似文献   

9.
《Analytical letters》2012,45(6):1114-1125
The photocatalytic oxidation of ethanol over TiO2 nanotubes (NTs) was investigated by in situ attenuated total reflection using Fourier transform infrared spectroscopy (ATR-FTIR) and ultraviolet (UV)-visible spectroscopy. In the ATR-FTIR study, the TiO2 NTs were spread in a ZnSe crystal trough that was used as the reactor. The evolution of the reaction under UV irradiation was investigated by in situ monitoring of changes in the species at the surface of the TiO2 NTs. Ethanol adsorbed on the TiO2 NTs surface, forming alkoxide and hydroxide groups, which were then attacked by ?OH, with the formation of a vinyl alcohol intermediate that was finally transformed to acetic acid. In addition, the species changes in the reaction solution were also investigated by in situ UV-visible spectroscopy using a small volume flow-through cell. The UV-visible data further confirmed the oxidation mechanism of ethanol on TiO2 NTs elucidated by ATR-FTIR data.  相似文献   

10.
N掺杂TiO_2纳米粒子表面光生电荷特性与光催化活性   总被引:2,自引:0,他引:2  
以尿素为氮源,采用水热法制备了不同N掺杂量的TiO2(N-TiO2)光催化剂.利用X射线衍射(XRD),紫外-可见漫反射光谱(UV-Vis DRS),X射线光电子能谱(XPS)及荧光(PL)光谱等技术对其进行了系统的表征.以罗丹明B(RhB)和甲基橙(MO)溶液的脱色降解为模型反应,分别考察了N-TiO2光催化剂在紫外和可见光区的光催化活性.利用表面光伏(SPV)和瞬态光伏(TPV)技术研究了N-TiO2纳米粒子表面光生电荷的产生和传输机制,并探讨了光生电荷与光催化活性之间的关系.结果显示,随着N含量的增大,TiO2表面光伏响应阈值红移,可见光部分光电压响应强度逐渐增强,瞬态光伏响应达到最大值的时间亦有着不同程度的延迟.这表明适量的N掺杂能够提高TiO2纳米粒子中光生载流子的分离效率,相应地延长载流子的传输时间,增加光生电荷的寿命,从而促进其光催化活性;而过量的N掺杂则增加了TiO2纳米粒子中光生载流子的复合中心,抑制其光催化活性.  相似文献   

11.
A novel photocatalytically degradable TiO2/poly[acrylamide-co-(acrylic acid)] composite hydrogel (TiO2/poly[AAm-co-AAc]) was synthesized by polymerization in an aqueous solution with N,N’-methylenebisacrylamide as the crosslinker and ammonium persulphate and TEMED as the initiator pair. The combined and separate effects of photodegradation and adsorption processes for dye removal were evaluated using methylene blue (MB) as the model dye for a photodegradation target, and compared with those of the neat poly[AAm-co-AAc], and a commercially available TiO2 photocatalyst (Degussa P-25). Without photodegradation (i.e. in the dark), the TiO2/poly[AAm-co-AAc] composite adsorbed up to 85% of the MB from a 5 mg L−1 MB solution in 15 min compared to only 10% for the pristine TiO2. The reproducibility in photodegradation of the reused poly[AAm-co-AAc] composite was also investigated, where poly[AAm-co-AAc] was found to be photocatalytically degraded under UV irradiation. Therefore, the TiO2/poly[AAm-co-AAc] composite hydrogel is a good dye adsorber with self-photodegradability and it also can easily be separated from the reaction by simple filtration. With these properties, the TiO2/poly[AAm-co-AAc] hydrogel can be called a green polymer for use in the photodegradation-adsorption process for the abatement of various pollutants.  相似文献   

12.
Evaluation of Photocatalytic Activity by Dye Decomposition   总被引:1,自引:0,他引:1  
A novel rapid evaluation method for the photocatalytic activity of TiO2 thin films was developed. An organic dye with a polyvinyl alcohol (PVA) binder was spin coated on the TiO2 thin film, and the decrease in the absorbance of the dye's absorption peak during UV light irradiation was measured. Acid Blue 9 (Brilliant Blue FCF; CI-42090) could be used as the probe, while Methylene Blue (CI-52015) was not applicable to this method because of the reversible color change after the UV irradiation was stopped. PVA has virtually no interaction with oxidizing radicals, therefore, it is regarded as a simple binder holding dye molecules in the coated dye-PVA film. It was found that the ambient humidity during the UV irradiation strongly accelerates the discoloration rate of the dye, probably due to the increase in the photogenerated oxidizing radicals on the TiO2 surface. This dye discoloration could be explainedby the one-dimensional diffusion model with a first order reaction.  相似文献   

13.
La-doped TiO2 nanotubes (La/TiO2 NTs) were prepared by the combination of sol-gel process with hydrothermal treatment. The prepared samples were characterized by using transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectra, and ultraviolet-visible spectra. The photocatalytic performance of La/TiO2 NTs was studied by testing the degradation rate of methyl orange under ultraviolet (UV) irradiation. The results indicated La/TiO2 NTs calcined at 300°C consisted of anatase as the unique phase. The absorption spectra of the La/TiO2 NTs showed a stronger absorption in the UV range and a slight red shift in the band gap transition than that of pure TiO2 nanotubes. The photocatalytic performance of TiO2 NTs could be improved by the doping of lanthanum ions, which is ascribed to several beneficial effects the formation of Ti-O-La bond and charge imbalance, existing of oxygen defects and Ti3+ species, stronger absorption in the UV range and a slight red shift in the band gap transition, as well as higher equilibrium dark adsorption of methyl orange. 0.75 wt% La/TiO2 NTs had the best catalytic activity.  相似文献   

14.
15.
16.
17.
18.
19.
无氧条件下Pt/TiO2光催化重整降解一乙醇胺水溶液制氢   总被引:2,自引:0,他引:2  
以一乙醇胺(以下简称乙醇胺)为电子给体,在无氧条件下进行了Pt/TiO2光催化重整制氢的研究.详细讨论了诸多因素如催化剂表面Pt化学状态、Pt担载量、溶液pH值、乙醇胺溶液浓度等对产氢效率的影响,并用XRD、HNMR、XPS等进行了深入表征,探讨了Pt/TiO2光催化重整降解乙醇胺和产氢的反应, 实验表明,利用所制备的光催化剂, 可实现在消除水中有机污染物的同时制取氢气的目标.催化剂表面的Pt以Pt0的化学状态存在, 有利于析氢;溶液pH值和浓度的变化对产生速率也有一定的影响.同时发现Pt/TiO2光催化重整乙醇胺制氢反应的最佳条件是:Pt的最佳担载量约为0.5%~1.0%;乙醇胺溶液最佳浓度约为0.05 mol•L-1;最佳溶液pH值范围为4~10;氨基取代的羰基类化合物是其主要中间产物.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号