首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the preparation, characterization, and drug release kinetics of a pH-responsive hydrogel film from a dendrimer megamer. The megamer (GP32) is a three-dimensional reticulated structure with a mean diameter of 71.16 nm (PDI 0.150) and was prepared by the reaction between Poly(amidoamine) generation4 (PAMAM G4) dendrimer and glutaraldehyde (G:P molar ratio 32). The crosslinking units in the megamer are provided mainly by the bicyclic dimer 2-hydroxy-3,4,4a,7,8,8a–hexahydro-2H-chromene-6-carbaldehyde as determined by high-resolution (800 MHz) 1H NMR and FTIR. The hydrogel film (F[GP32]) is formed upon evaporation of a methanolic solution of the megamer and has a high degree of organization and homogeneity. Further crosslinking with glutaraldehyde (CLF[GP32]) enhanced the mechanical properties of the hydrogel film. The chemical constitution and unique megamer architecture enable the hydrogel film to carry both lipophilic and hydrophilic substances. The film did not cause any dermal irritation or clinical signs of toxicity in tests on rabbits, allowed for a sustained release of ketoprofen and played an important role in the process of drug delivery into the receptor medium. This performance taken together with the absence of toxicity makes this hydrogel film a good choice for dermal sustained drug release.
Graphical abstract ?
  相似文献   

2.
Novel water-soluble anionic p-tert-butylthiacalix[4]arene with propanesulfonate fragments has been synthesized. Alkylation of the lower rim of thiacalix[4]arene in the presence of NaH/THF led to cone conformation instead of the expected 1,3-alternate conformer due to metal template effect. The presence of supramolecular associates at the critical micelle concentration of 1.65 · 10?5 M were investigated in aqueous solutions by a combination of different techniques (DLS and conductivity). It was observed that the macrocyclic platform decreases the CMC by tenfold as compared with non-macrocycle analogs. A simple approach for the design of stable monodisperse Ag-based nanoaggregates (near 95 nm) containing ionic Ag and organic ligand–thiacalix[4]arene sulfo derivative in water has been developed. Self-assembled fractal hybrid nanodendrites consisting of water-soluble anionic (thia)calix[4]arenes and Ag+ have been obtained in a single step under mild conditions.
Graphical abstract ?
  相似文献   

3.
Nano-octahedra of cobalt ferrite Co x Fe3???xO4 (1?≤?x?<?2), with a broad size distribution around 15–20 nm, were synthesized by a hydrothermal method using nitrates as precursors. For the first time, single-phased nano-octahedra of cobalt-rich ferrite Co x Fe3???xO4 (x?=?1.5) were synthesized. The nano-octahedra are crystallized in a normal spinel structure, with tetrahedral sites occupied by Co2+. This specific octahedral shape was obtained with anionic, cationic, and nonionic surfactants. The nature of the surfactant influenced the chemical composition of the powder and the size of the nano-octahedra. The {100} truncation of the octahedra is more pronounced for the small particles. For the first time, single-phased nanoparticles with as much as x?=?1.8 cobalt were synthesized with ethylene glycol as solvent. These nanoparticles, around 8 nm in size, have no specific shape and possess a lacunar spinel structure similar to maghemite. The samples were characterized by X-ray diffraction, transmission electron microscopy, and energy-dispersive spectroscopy.
Graphical abstract ?
  相似文献   

4.
Despite advancements in treatment of infectious diseases, opportunistic pathogens continue to pose a worldwide threat. Identifying a source of infection/inflammation is often challenging which highlights the need of improved diagnostic agents. Using a model of local S. aureus infection, here we evaluated the potential of betamethasone or dexamethasone loaded in poly (lactic acid) nanoparticles and radiolabeled with 99mTc to detect an infection/inflammation site in vivo. A betamethasone and dexamethasone nanoparticles (NPs) with 200 and 220 nm in size, respectively, were created with a 98% 99mTc radiolabeling efficiency. When injected in infected mice, betamethasone NPs presented a higher accumulation in the infected hind paw in comparison with dexamethasone NPs. Our results suggest that this nanosystem may be a valid nanoradiopharmaceutical for the detection of inflammation/infection foci in vivo.
Graphical abstract Nanoradiopharmaceutical for inflammation
  相似文献   

5.
A combined strategy of in situ oxidation and assembly is developed to prepare Ag/AgCl nanospheres and nanocubes from Ag nanoparticles under room temperature. It is a new facile way to fabricate Ag/AgCl with small sizes and defined morphologies. Ag/AgCl nanospheres with an average size of 80 nm were achieved without any surfactants, while Ag/AgCl nanocubes with a mean edge length of 150 nm were obtained by introduction of N-dodecyl-N,N-dimethyl-2-ammonio-acetate. The possible formation mechanism involves the self-assembly of AgCl nanoparticles, Ostwald ripening and photoreduction of Ag+ into Ag0 by the room light. The as-prepared Ag/AgCl nanospheres and nanocubes exhibit excellent photocatalytic activity and stability toward degradation of organic pollutants under visible-light irradiation. It is demonstrated that Ag/AgCl nanocubes display enhanced photocatalytic activity in comparison with Ag/AgCl nanospheres due to the more efficient charge transfer. This work may pave an avenue to construct various functional materials via the assembly strategy using nanoparticles as versatile building blocks.
Graphical abstract A combined strategy of in situ oxidation and assembly was developed to construct Ag/AgCl nanospheres and nanocubes from Ag nanoparticles, which exhibited highly photocatalytic activity and good stability for degrading methyl orange under visible light irradiation.
  相似文献   

6.
Hepatocellular carcinoma (HCC) is the most common form of liver cancer, occurring primarily in regions where viral hepatitis infections are common. Unfortunately, most HCC cases remain undiagnosed until late stages of the disease when patient outcome is poor, typically limiting survival from a few months to a year after initial diagnosis. In order to better care for HCC patients, new target-specific approaches are needed to improve early detection and therapeutic intervention. In this work, polymeric nanoparticles functionalized with a HCC-specific aptamer were examined as potential targeted drug delivery vehicles. Specifically, doxorubicin-loaded nanoparticles were prepared via nanoprecipitation of blends of poly(lactic-co-glycolic acid)-b-poly(ethylene glycol). These particles were further functionalized with the HCC-specific TLS11a aptamer. The in vitro interaction and therapeutic efficacy of the aptamer and aptamer-functionalized nanoparticles were characterized in a hepatoma cell line. Nanoparticles were found to be spherical in shape, roughly 100–125 nm in diameter, with a low polydispersity (≤0.2) and slightly negative surface potential. Doxorubicin was encapsulated within the particles at ~40 % efficiency. Drug release was found to occur through anomalous transport influenced by diffusion and polymer relaxation, releasing ~50 % doxorubicin in the first 10 h and full release occurring within 36 h. Confocal microscopy confirmed binding and attachment of aptamer-targeted nanoparticles to the cell surface of cultured HCC cells. Efficacy studies demonstrated a significant improvement in doxorubicin delivery and cell-killing capacity using the aptamer-functionalized, drug-loaded nanoparticles versus controls further supporting use of aptamer nanoparticles as a targeted drug delivery system for HCC tumors.
Graphical abstract In this work, polymeric nanoparticles functionalized with a liver cancer-specific aptamer were examined as potential targeted drug delivery vehicles. The aptamer-functionalized nanoparticles were found to significantly improve doxorubicin drug delivery and cell-killing capacity in vitro versus non-targeted controls, supporting their use as a targeted treatment toward liver cancer tumors.
  相似文献   

7.
All kinds of different treatments for cancer have been proposed in the last years, being these mostly non-selective to neoplastic cells, but with the development of nanoscience, new approaches have developed, proposing nano-vectors as drug carriers and thus avoiding or diminishing the collateral and secondary effects of anticancer drugs. However, the structure, electronic properties, and protein interactions of these kinds of nanosystems have not been deeply studied. For this reason, we are proposing the design of three novel nano-devices against ovarian cancer, using a finite single-wall carbon nanotube functionalized with three commercial anticancer drugs (altretamine, melphalan, and cyclophosphamide) and glucosamine as solubilizing molecule, with a size range of 29.8 to 34.5 Å, which were characterized by a state-of-the-art methodology within density functional theory, obtaining their optimized structures, which were verified to be minima in the potential energy surfaces. We have calculated the changes in their electronic parameters, as compared with the respective free drugs; we also studied the interaction of these nano-vectors with KLK5, a protein overexpressed in ovarian cancer, which we suggest may contribute to the drug delivery process.
Graphical abstract ?
  相似文献   

8.
For safety and environmental risk assessments of nanomaterials (NMs) and to provide essential toxicity data, nano-specific toxicities, or excess toxicities, of ZnO, CuO, and Ag nanoparticles (NPs) (20, 20, and 30 nm, respectively) to Escherichia coli and Saccharomyces cerevisiae in short-term (6 h) and long-term (48 h) bioassays were quantified based on a toxic ratio. ZnO NPs exhibited no nano-specific toxicities, reflecting similar toxicities as ZnO bulk particles (BPs) (as well as zinc salt). However, CuO and Ag NPs yielded distinctly nano-specific toxicities when compared with their BPs. According to their nano-specific toxicities, the capability of these NPs in eliciting hazardous effects on humans and the environment was as follows: CuO > Ag > ZnO NPs. Moreover, long-term bioassays were more sensitive to nano-specific toxicity than short-term bioassays. Overall, nano-specific toxicity is a meaningful measurement to evaluate the environmental risk of NPs. The log T e particle value is a useful parameter for quantifying NP nano-specific toxicity and enabling comparisons of international toxicological data. Furthermore, this value could be used to determine the environmental risk of NPs.
Graphical abstract Scientific explanation of Nano-specific toxicity
  相似文献   

9.
This report demonstrates a quantum dot (QD)-based selective and fast sensor platform for detection of folic acid (FA). This electrochemical platform provides a good linear relation between the anodic and cathodic peak currents (i pa and i pc ) in the FA concentration range of 12 to 96 nM, and the minimum detection limit (MDL) achieved was 10 nM. As an extension, absorbance and fluorescence methods were also used for the detection of FA in solutions. Core-shell QDs provided better binding than core-only ZnSe quantum dots, and showed twofold increment in binding constant. A detailed comparative evaluation of the three methods (absorbance, fluorescence, and electrochemical) is presented vis-a-vis real samples. Therefore, in principle absorbance and fluorescence spectroscopy can also be used for detecting folic acid with high selectivity and sensitivity. The MDL can be extended to be 4–7 nM level by using fluorescence and absorbance spectroscopy. FA metabolism occurs in the intestine, where the pH conditions are basic. Hence, sensing of FA under physiological conditions is relevant, which was achieved in our case. Earlier methods have reported sensing under acidic or neutral pH conditions. Considering the importance of folic acid in physiology, the significance of the present study can be hardly stressed.
Graphical abstract Interaction of ZnSe and ZnSe@ZnS QDs with Folic acid
  相似文献   

10.
Recently, targeted drug delivery systems (TDDS) have offered a great potential and benefits towards the anti-tumor drug delivery. In this work, we designed the TDDS using a biocompatible poly(ethylene glycol)-poly(β-amino esters) amphiphilic block copolymer (PEG-PAEs) synthesized by Michael addition polymerization for combinatorial therapy. Further, the chemotherapeutic agents’ doxorubicin (DOX) and AS1411 DNA aptamer (Apt) are encapsulated in the PEG-PAEs NPs (PDANs) for co-delivery therapeutics. PDANs have shown the monodisperse spherical shape, smooth surface with a net positive charge (average diameter—183.1 ± 27.2 nm, zeta potential—31.2 ± 6.3 mV), and good colloidal stability (critical micelle concentration of PEG-PAEs is about 6.3 μg/mL). The pH-sensitive PAEs endowed PDANs both pH-triggered drug release characteristics and enhanced endo/lysosomal escape ability, thus improving the localization and cytotoxicity of DOX. AS1411 Apt conjugated PDANs precisely targeted nucleolin and their uptake correlates to a significant activity enhancement only in tumor cells (MCF-7) but not in normal cells (MCF-10A). Thus, PDANs can be a very promising targeted drug delivery platform for effective breast cancer therapy.
Graphical abstract Scheme 1 Schematic illustration of the preparation and cellular uptake of targeted co-delivery system
  相似文献   

11.
A simple solid-state method has been applied to synthesize Ni/reduced graphene oxide (Ni/rGO) nanocomposite under ambient condition. Ni nanoparticles with size of 10–30 nm supported on reduced graphene oxide (rGO) nanosheets are obtained through one-pot solid-state co-reduction among nickel chloride, graphene oxide, and sodium borohydride. The Ni/rGO nanohybrid shows enhanced catalytic activity toward the reduction of p-nitrophenol (PNP) into p-aminophenol compared with Ni nanoparticles. The results of kinetic research display that the pseudo-first-order rate constant for hydrogenation reaction of PNP with Ni/rGO nanocomposite is 7.66 × 10?3 s?1, which is higher than that of Ni nanoparticles (4.48 × 10?3 s?1). It also presents superior turnover frequency (TOF, 5.36 h?1) and lower activation energy (Ea, 29.65 kJ mol?1) in the hydrogenation of PNP with Ni/rGO nanocomposite. Furthermore, composite catalyst can be magnetically separated and reused for five cycles. The large surface area and high electron transfer property of rGO support are beneficial for good catalytic performance of Ni/rGO nanocomposite. Our study demonstrates a simple approach to fabricate metal-rGO heterogeneous nanostructures with advanced functions.
Graphical abstract ?
  相似文献   

12.
Preparation, characterization, and electrocatalytic study of the electrodeposited Pt and Pd (e.g., Pt and PtPd) catalysts on titanium dioxide (TiO2) modified reduced graphene oxide (rGO) support for formic acid oxidation were performed. The catalyst composites are labeled as xPt/rGO-TiO2, xPtyPd/rGO-TiO2, and yPd/rGO-TiO2 where x and y are cycle numbers of metal electrodeposition (x and y?=?2–6). The characterizations of the catalysts were performed by Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Small and dispersed metal nanoparticles are obtained on rGO-TiO2. The catalytic performances for formic acid oxidation were measured by cyclic voltammetry (CV) and chronoamperometry (CA). The electrocatalytic results reveal that the bimetallic 4Pt2Pd/rGO-TiO2 catalyst facilitates formic acid oxidations at the lowest potentials and generates the highest oxidation currents and also improves the highest CO oxidation compared to the monometallic 6Pt/rGO-TiO2 catalyst. According to the experimental data, the Pd and TiO2 enhance the electrocatalytic activity of the catalysts towards the formic acid oxidation; the improved catalytic performance of the prepared catalysts strongly relates to the high electrochemically active surface area (ECSA) investigated.
Graphical abstract TEM image of xPtyPd/rGO-TiO2 and its CV towards oxidation
  相似文献   

13.
Core-shell AuNR@Ag nanostructures were synthesized and surface-grafted with thermosensitive poly(N-isopropylacrylamide) to enhance stability and endow stimuli-responsive property. The AuNR cores showed average dimensions of 8-nm diameter and 33-nm length, while the anisotropic silver shells displayed 1–2 nm thin side and maximal 8 nm fat side. The obtained polymer-stabilized AuNR@Ag nanostructures as catalysts showed normal Arrhenius change of apparent rate constant, k app, in catalyzed reaction between 20 and 30 °C, but displayed a decrease of k app with respect to the temperature increasing between 32.5–40 °C, showing self-inhibition of the observed catalytic activity. Such “smart” self-inhibition of catalytic activity at enhanced temperature can be attributed to the thermosensitive response of the grafted polymer molecules and should be significant to control the reaction rate and avoid superheat for exothermic reactions. Such polymer-stabilized nanocatalyst also could be recovered and reused in the catalytic system.
Graphical abstract Core-shell AuNR@Ag nanostructures were grafted with thermosensitive poly(N-isopropylacrylamide) and the obtained polymer-stabilized nanostructures as catalysts showed normal Arrhenius change of apparent rate constant, k app, of catalyzed reaction between 20 and 30 °C, but displayed a decrease of k app with respect to the temperature increasing between 32.5 and 40 °C. Such “smart” self-inhibition of catalytic activity at enhanced temperature should be significant to control the reaction rate and avoid superheat for exothermic reactions. The AuNR@Ag nanostructures could also be considered as recyclable catalysts.
  相似文献   

14.
Although number of stimuli-responsive drug delivery systems based on mesoporous silica nanoparticles (MSNs) have been developed, the simultaneous real-time monitoring of carrier in order to guarantee proper drug targeting still remains as a challenge. GQDs-MSNs nanocomposite nanoparticles composed of graphene quantum dots (GQDs) and MSNs are proposed as efficient doxorubicin delivery and fluorescent imaging agent, allowing to monitor intracellular localization of a carrier and drug diffusion route from the carrier.Graphene quantum dots (average diameter 3.65?±?0.81 nm) as a fluorescent agent were chemically immobilized onto mesoporous silica nanoparticles (average diameter 44.08?±?7.18 nm) and loaded with doxorubicin. The structure, morphology, chemical composition, and optical properties as well as drug release behavior of doxorubicin (DOX)-loaded GQDs-MSNs were investigated. Then, the in vitro cytotoxicity, cellular uptake, and intracellular localization studies were carried out. Prepared GQDs-MSNs form stable suspensions exhibiting excitation-dependent photoluminescence (PL) behavior. These nanocomposite nanoparticles can be easily DOX-loaded and show pH- and temperature-dependent release behavior. Cytotoxicity studies proved that GQDs-MSNs nanocomposite nanoparticles are nontoxic; however, when loaded with drug, they enable the therapeutic activity of DOX via its active delivery and release. GQDs-MSNs owing to their fluorescent properties and efficient in vitro cellular internalization via caveolae/lipid raft-dependent endocytosis show a high potential for the optical imaging, including the simultaneous real-time optical tracking of the loaded drug during its delivery and release.
Graphical abstract ?
  相似文献   

15.
Protein complexes that mediate secretion and adhesion are located on the plasma membrane of pancreatic β cells. Neuroligins and their binding partners, the neurexins, are among these complexes. β cell maturation and physiologically regulated insulin secretion, as a response to high levels of blood glucose, are dependent on their three-dimensional (3D) arrangement. Both insulin secretion and the proliferation rates of β cells dramatically increase when β cells are co-cultured with clusters of a member of the neuroligin family: NL-2. A membranal protein, such as NL-2, has very limited drugability owing to its low biostability and bioavailability. Thus, based on in silico modeling, a short NL-2 peptide (HSA-28), which was able to mimic NL-2-positive effects on β cells, was designed, as we described in previous publication. However, the peptide was active only as a cluster, created by the covering the maghemite (γ-Fe2O3)-based nanoparticles (NPs) with limited biocompatibility. In this brief communication, we will show that conjugation of HSA-28 to biocompatible hydrogel NPs exhibits an impressive protective effect on INS-1E β cells under oxidative stress and induces their proliferation rate via augmentation of PDX1 nuclear translocation. The diameter of coated by the peptide NPs was 206?±?63 nm (DLS) and 114?±?27 nm (cryo-TEM). This significant change in size can be explained by the very hydrophilic character of the proteinoid NPs, inducing adsorption of many water molecules on their surface, which are accounted only by the DLS. The ability of biocompatible hydrogel NPs to prevent apoptosis and increase β cell mass might be used for developing novel β cell protective therapies.
Graphical abstract Effect of covered by bioactive peptide NPs on PDX1 nuclei translocation.
  相似文献   

16.
The oxidative potential (OP) of engineered nanomaterials (NM) is considered as promising metric for nanosafety research and risk assessment. Here, we present findings on the analysis of the oxidative potential of three different silver NM by means of a complementary electron paramagnetic resonance (EPR) spectroscopy-based approach, i.e., using the spin trap DMPO (5,5-dimethyl-1-pyrroline-N-oxide) and the spin probe CPH (l-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine hydrochloride). The results revealed that both methods are principally applicable for OP analysis of nanosilver. However, one of the Ag NM (i.e., NM300) did not cause notable OH? generation in the presence of hydrogen peroxide, while a clear OP was detected using the CPH method for all three Ag NPs tested. For the NM300, also a strong OH? scavenging potency could be demonstrated, which was due to its surfactant-containing dispersant. This finding may explain for the reported differences in effects of this widely applied reference nanosilver versus other types of Ag NM in toxicological studies. Our findings also demonstrate the relevance of using more than one assay to determine the OP of NM in general.
Graphical abstract ?
  相似文献   

17.
Small core-shell Fe3O4@Pd superparamagnetic nanoparticles (MNPs) were obtained with good control in size and shape distribution by metal-complex thermal decomposition in organic media. The role of the stabilizer in the synthesis of MNPs was studied, employing oleylamine (OA), triphenylphosphine (TPP) and triphenylamine (TPA). The results revealed that, among the stabilizer investigated, the presence of oleylamine in the reaction media is crucial in order to obtain an uniform shell of Pd(0) in Fe3O4@Pd MNPs of 7?±?1 nm. The synthesized core-shell MNPs were tested in Pd-catalyzed Heck-Mizoroki and Suzuki-Miyaura coupling reactions and p-chloronitrobenzene hydrogenation. High conversion, good reaction yields, and good TOF values were achieved in the three reaction systems with this nanocatalyst. The core-shell nanoparticle was easily recovered by a simple magnetic separation using a neodymium commercial magnet, which allowed performing up to four cycles of reuse.
Graphical abstract ?
  相似文献   

18.
A novel approach for the preparation of molybdenum carbide by solution combustion synthesis (SCS) combined with subsequent programmed heating of SCS products was proposed using ammonium heptamolybdate (AHM) and organic reducers (glycine, alanine, glucose, etc.) as precursors. It has been shown that SCS temperature and composition of the products are governed by changing the AHM-organic fuel ratio, the type of organic reducer, the rate of gaseous oxygen flow, and quantity of ammonium nitrate. A solution combustion synthesis method allowed to produce molybdenum carbide at the first stage only from the AHM-glycine system. In the other studied systems, carburization process was stimulated by the subsequent programmed heating of the SCS product, sometimes with addition of a certain amount of carbon source up to 1200 °C with Vh?=?20–100°min?1. The catalytic activity and selectivity of Mo2C was tested on the model reaction of isopropyl alcohol conversion. A new phenomenon showing the temperature influence on the selectivity of either propylene or acetone formation was revealed.
Graphical abstract ?
  相似文献   

19.
The design of nanostructures based on poly(ethylene oxide)-poly(propylene)-poly(ethylene oxide) (PEO-PPO-PEO) and metal nanoparticles is becoming an important research topic due to their multiple functionalities in different fields, including nanomedicine and catalysis. In this work, water-soluble gold nanoparticles have been prepared through a green aqueous synthesis method using Pluronic F127 as both reducing and stabilizing agents. The size dependence (varying from 2 to 70 nm) and stability of gold nanoparticles were systematically studied by varying some parameters of synthesis, which were the polymer concentration, temperature, and exposure to UV-A light, being monitored by UV-Vis spectroscopy and TEM. Also, an elaborated study regarding to the kinetic of formation (nucleation and growth) was presented. Finally, the as-prepared Pluronic-capped gold nanoparticles have shown excellent catalytic activity towards the reduction of 4-nitrophenol to 4-aminophenol with sodium borohydride, in which a higher catalytic performance was exhibited when compared with gold nanoparticles prepared by classical reduction method using sodium citrate.
Graphical abstract Synthesis of catalytically active gold nanostructures mediated by a pluronic triblock copolymer
  相似文献   

20.
Ligand-free palladium nanoparticles supported on multi-walled carbon nanotubes (Pd/MWCNT) were prepared by the supercritical carbon dioxide (scCO2) deposition method using a novel scCO2-soluble Pd organometallic complex as a precursor. The precursor with the perfluoroalkyl chain group was synthesized and identified by microanalytic methods. The deposition was carried out at the temperature of 363.15 K and pressure of 27.6 MPa CO2. The prepared metallic nanoparticles were obtained with an average size of 2 nm. Pd/MWCNT was utilized as a heterogeneous catalyst in Suzuki cross-coupling reaction. The nanocatalyst was found very effective in Suzuki reaction and it could also be recovered easily from the reaction media and reused over several cycles without significant loss of catalytic activity under mild conditions.
Graphical Abstract Pd/MWCNT was prepared by the scCO2 deposition method using a new synthesized perfluroalkylated vic-dioxime Pd complex as the precursor. The prepared nanoparticle was very effective as catalyst and reusable for Suzuki cross coupling reaction under mild conditions.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号