首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of doping of titanium dioxide with the anatase structure by boron, carbon, and nitrogen atoms on the magnetic and optical properties and the electronic spectrum of this compound has been investigated using the ab initio tight-binding linear muffin-tin orbital (TB-LMTO) band-structure method in the local spin density approximation explicitly including Coulomb correlations (LSDA + U) in combination with the semiempirical extended Hückel theory (EHT) method. The LSDA + U calculations of the electronic structure, the imaginary part of the dielectric function, the total magnetic moments, and the magnetic moments at the impurity atoms have been carried out. The diagrams of the molecular orbitals of the clusters Ti3 X (X = B, C, N) have been calculated and the pseudo-space images of the molecular orbitals of the clusters have been constructed. The effect of doping on the nature and origin of photocatalytic activity in the visible spectral range and the specific features of the generation of ferromagnetic interactions in doped anatase have been discussed based on the analysis of the obtained data. It has been shown that, in the sequence TiO2 ? y N y → TiO2 ? y C y → TiO2 ? y B y (y = 1/16), the photocatalytic activity can increase with the generation of electronic excitations with the participation of impurity bands. The calculated magnetic moments for boron and nitrogen atoms are equal to 1 μB, whereas the impurity carbon atoms are nonmagnetic.  相似文献   

2.
Using an atomic beam magnetic resonance apparatus the nuclear magnetic dipole momentμ I of the stable isotope Au197 was measured directly with the doublet method. The result isμ I(Au197)=0.143491 (9)μ n, uncorrected for atomic diamagnetism. Further hyperfine structure measurements were performed in the ground states of K39, Ag107, Ag109 and Au197 with the following results:Δv(K39)=461.719723 (38) MHzΔv(Ag107)=1712.512111 (18) MHzΔv(Ag109)=1976.932075 (17) MHzΔv(Au197)=6099.320184 (13) MHzg J(Ag107)/g J(K39)=1.0000260 (20)g J(Au197)/g J(K39)=1.0005076 (20).  相似文献   

3.
The structure, stability, and electronic properties of Pd n Au (n = 3~20) clusters are studied by density functional theory. The results show that the clusters studied here prefer three-dimensional structures even with very small atom number. It is found that the binding energies of Pd n Au clusters are higher than the corresponding pure Pd n clusters with the same atom number. Most Pd n Au clusters studied here are magnetic with magnetic moments ranging from 1.0 to 7.0 μ B. The dissociation energies of Pd atoms are lower than the doped gold atom, that is the doped Au atom will increase the mother clusters stability and activity.  相似文献   

4.
An exhaustive study of the structural and magnetic properties of Fe7?n Pt n with n = 0, 1, 2, …7, bimetallic clusters is presented. Based on ab initio density functional theory that includes spin-orbit coupling (SOC) and graph theory, the ground state geometry, the local chemical order, and the orbital and spin magnetic moments are calculated. We show how the systems evolves from the 3-d Fe to the quasi-planar Pt clusters. These calculations show that SOC are necessary to describe correctly the composition dependence of the binding energy of these nanoalloys. We observe that the ground state geometries on the Fe rich side resemble the fcc structure adopted by bulk samples. Furthermore, we observe how the spin and orbital magnetic moments depend on the chemical concentration and chemical order. Based on these results, we estimated the magnetic anisotropy energy and found that the largest values correspond to some of the most symmetric structures, Fe5Pt2 and FePt6. To determine the degree of non-collinearity, we define an index that shows that in FePt6 the total magnetic moments, on each atom, are the less collinear.  相似文献   

5.
The effect of low-temperature annealing on the magnetization curve of YBa2Cu3O6 + x ceramics in the superconducting state (x ≈ 0.9) is investigated. When the annealing time is fairly long, the field dependence of magnetic moment M exhibits a feature in the form of a plateau, where the value of M remains almost constant. The evolution of this feature in the magnetization curves of annealed samples with annealing time and temperature is studied. It is assumed that low-temperature annealing gives rise to metastable ferromagnetic clusters in YBa2Cu3O6 + x ceramics, the contribution of which to the magnetic moment accounts for the feature in the magnetization curves of the annealed samples.  相似文献   

6.
Composites representing a network of random Josephson junctions and characterized by the compositions 92.5 at. % Y3/4Lu1/4Ba2Cu3O7+7.5 at. % NiTiO3 and 92.5 at. % Y3/4Lu1/4Ba2Cu3O7+7.5 at.% MgTiO3 are synthesized, and their magnetoresistance properties are studied. The temperature dependence of the resistance R(T) measured for the composite that contains the paramagnetic NiTiO3 compound exhibits a characteristic feature below the superconducting transition temperature Tc of the high-Tc superconductor, namely, a region where R is independent of the current j and weakly depends on the magnetic field H. Below a certain temperature Tm, a strong dependence of R on j and H is observed, which is peculiar to a network of Josephson junctions. The dependences R(T, j, H) obtained for the “reference” samples with the nonmagnetic MgTiO3 compound exhibit no such features. The anomalous behavior of the HTSC + NiTiO3 composite is explained by the effect produced by the magnetic moments of Ni atoms in the insulating barriers on the transport current.  相似文献   

7.
The high-pressure (to 5 GPa) effect on the crystal and magnetic structures of the hexagonal manganite YMnO3 is studied by neutron diffraction in the temperature range 10–295 K. A spin-liquid state due to magnetic frustration on the triangular lattice formed by Mn ions is observed in this compound at normal pressure and T > TN = 70 K, and an ordered triangular antiferromagnetic state with the symmetry of the irreducible representation Γ1 arises at T < TN. The high-pressure effect leads to a spin reorientation of Mn magnetic moments and a change in the symmetry of the antiferromagnetic structure, which can be described by a combination of the irreducible representations Γ1 and Γ2. In addition, it is observed that the ordered magnetic moment of Mn ions decreases from 3.27 μB (5 GPa) to 1.52 μB (5 GPa) at T = 10 K and diffuse scattering is enhanced at temperatures close to TN. These effects can be explained within the model of the coexistence of the ordered antiferromagnetic phase and the spin-liquid state, whose volume fraction increases with pressure due to the enhancement of frustration effects.  相似文献   

8.
The resistivity, magnetoresistance, thermopower, and magnetic susceptibility of La1?xAxMnO3(A≡Ca,Sr;x=0.07–0.1) single crystals are investigated in the temperature range from 77 to 400 K. Sharp changes in the properties (the resistivity activation energy ΔEρ, its temperature coefficient γ, the thermopower activation energy ΔE S , the magnetoresistance, and the appearance of spontaneous magnetization) of these crystals occur near a temperature of 275±25 K, which is approximately twice as high as their Curie point TC and approximately half of the structural transition temperature. The results are explained by the phase separation: the formation of ferromagnetic clusters. The phase separation occurs through the coalescence of small-radius unsaturated magnetic polarons, in which only two or three magnetic moments of Mn are polarized, into a large-radius ferromagnetic polaron (a cluster about 10–12 Å in size) with several charge carriers. As a result, the short-range order occurs in the cluster at a temperature of about 275 K, which is close to T C of conducting doped manganites. The results of the experimental studies of the resistivity and the magnetoresistance as functions of temperature and magnetic field and the estimates agree well with the cluster model.  相似文献   

9.
The mechanism of hole carrier generation is considered in the framework of a model assuming the formation of negative U centers (NUCs) in HTSC materials under doping. The calculated dependences of carrier concentration on the doping level and temperature are in quantitative agreement with experiment. An explanation is proposed for the pseudogap and 60 K phases in YBa2Cu3O6+δ. It is assumed that a pseudogap is of superconducting origin and arises at temperature T* > Tc∞ > Tc in small nonpercolating clusters as a result of strong fluctuations in the occupancy of NUCs (Tc∞ and Tc are the superconducting transition temperatures of an infinitely large and finite NUC clusters, respectively). The T*(δ) and Tc(δ) dependences calculated for YBa2Cu3O6+δ correlate with experimental dependences. In accordance with the model, the region between T*(δ) and Tc(δ) is the range of fluctuations in which finite nonpercolation clusters fluctuate between the superconducting and normal states due to NUC occupancy fluctuations.  相似文献   

10.
The heat capacity of La1?x Ag x MnO3 manganites with x = 0.1, 0.15, and 0.2 is measured in the temperature range 77–350 K. An analogy between the effect of doping and the effect of a magnetic field on the temperature dependence of heat capacity of the La1?x Ag x MnO3 system is revealed. As lanthanum is replaced by silver, the volume fraction of the ferromagnetic phase increases, while, in the paramagnetic state, the Jahn-Teller distortions are eliminated. The results of the aforementioned measurements suggest that the phase transition near the Curie point is caused by the competition between the Coulomb and exchange electrostatic interactions. The comparison of the concentration dependences of T C for La1?x Sr x MnO3 and La1?x Ag x MnO3 points to good potentialities of the latter system from the viewpoint of applications.  相似文献   

11.
The structural and dynamic properties of the three-component Zr47Cu46Al7 system are subjected to a molecular dynamics simulation in the temperature range T = 250–3000 K at a pressure p = 1.0 bar. The temperature dependences of the Wendt–Abraham parameter and the translation order parameter are used to determine the glass transition temperature in the Zr47Cu46Al7 system, which is found to be Tc ≈ 750 K. It is found that the bulk amorphous Zr47Cu46Al7 alloy contains localized regions with an ordered atomic structures. Cluster analysis of configuration simulation data reveals the existence of quasi-icosahedral clusters in amorphous metallic Zr–Cu–Al alloys. The spectral densities of time radial distribution functions of the longitudinal (C?L(k, ω)) and transverse (C?T(k, ω)) fluxes are calculated in a wide wavenumber range in order to study the mechanisms of formation of atomic collective excitations in the Zr47Cu46Al7 system. It was found that a linear combination of three Gaussian functions is sufficient to reproduce the (C?L(k, ω)) spectra, whereas at least four Gaussian contributions are necessary to exactly describe the (C?T(k, ω)) spectra of the supercooled melt and the amorphous metallic alloy. It is shown that the collective atomic excitations in the equilibrium melt at T = 3000 K and in the amorphous metallic alloy at T = 250 K are characterized by two dispersion acoustic-like branches related with longitudinal and transverse polarizations.  相似文献   

12.
Mössbauer emission spectroscopy on the 61Cu(61Ni) isotope has been used to determine the quadrupole coupling constant C(Ni) and magnetic induction B(Ni) for the 61Ni2+ probe at copper sites in Cu2O, CuO, La2 ?xBaxCuO4, Nd2?xCexCuO4, RBa2Cu3O6, and RBa2Cu3O7 (R=Y, Nd, Gd, Yb). The compounds containing divalent copper were found to exhibit linear C(Ni) vs. C(Cu) and B(Ni) vs. B(Cu) relations [C(Cu) and B(Cu) are the quadrupole coupling constant and magnetic induction for the 63Cu probe, respectively, found by NMR], which is interpreted as an argument for the copper being in divalent state. The deviation of the data points corresponding to the Cu(1) sites in RBa2Cu3O6 and RBa2Cu3O7 from the C(Ni) vs. C(Cu) straight line may be due either to the copper valence being other than 2+ (in the RBa2Cu3O6 compounds) or to the principal axes of the total and valence electric field gradient being differently oriented (in the RBa2Cu3O7 compounds).  相似文献   

13.
The penetration of a magnetic field into superconducting grains and weak links of YBa2Cu3O7?δ ceramic high-temperature superconductors is investigated using measurements of the transverse and longitudinal magnetoresistances at T=77.3 K and 0≤H≤~500 Oe as a function of the transport current in the range ~0.01≤I/I c ≤~0.99. The effects associated with the complete penetration of Josephson vortices into weak links of the high-temperature superconductor in magnetic fields Hc2J, the onset of penetration of Abrikosov vortices into superconducting grains in magnetic fields Hc1A, and the first-order transition from the Bragg glass phase to the vortex glass phase in fields HBG-VG are revealed and interpreted. The I-H phase diagrams YBa2Cu3O7?δ high-temperature superconductors are constructed for IH and IH.  相似文献   

14.
The effect of isothermal annealing on the magnetic anisotropy, bilinear and biquadratic exchange coupling energies, and domain structure of Co/Cu/Co trilayer fiilms with dCo=6 nm and dCu=1.0 and 2.1 nm prepared by magnetron sputtering has been studied. It is shown that, under isothermal annealing, the biquadratic coupling energy decreases by more than an order of magnitude in films with dCu=1.0 nm and increases in films with dCu=2.1 nm. The fourth-order magnetic anisotropy is shown to be related to the existence of biquadratic exchange energy.  相似文献   

15.
The level-crossing technic has been used to investigate the hyperfinestructur of the 3d 10 4p 2 P 3/2-term in Copper I by scattering the resonance line λ=3248 Å on an atomic beam of separated isotop Cu63 respectively Cu65 in an external magnetic field. From the level-crossing signals values for the magnetic dipol interaction constantsA and for the electric quadrupol interaction constantsB are deduced to beeA(Cu63)=(194,72±0,15) Mc/secB(Cu63)=?(28,8±0,6) Mc/secA(Cu65)=(208,57±0,15) Mc/secB(Cu65)=?(25,9±0,6) Mc/sec. With theA-value of the 3d 10 4p2P1/2-term from optical measurements the ratioA(2 P 3/2)∶A(2 P 1/2)≈0,4 is about twice greater than for an unperturbetalkali-like2P-term. From the width of the level-crossing signals a mean lifetime of the 3d10 4p2P3/2-term τ=(7,0±0,2) · 10?9 sec is deduced.  相似文献   

16.
The first thin La1?xAgyMnO3 epitaxial films (yx) were grown on SrTiO3 (110) substrates with silver present in the ionized state (Ag+) only. The Curie temperatures TC of the compositions with x = y = 0.05, x = y = 0.1, and x = 0.3 and y = 0.27 crystallizing in the hexagonal structure \(R\bar 3c\) above or close to room temperature. The temperature dependences of electrical resistivity ρ and of magnetoresistance ¦Δρ/ρ/¦ = ¦(ρH ? ρ H = 0)/ρH=0¦ pass through maxima near TC, with the magnetoresistance being negative and reaching colossal values of ~7–20% in a magnetic field H = 8.2 kOe not only at TC but also at room temperature. The magnetic moment per formula unit as derived from the saturation magnetization at T = 5 K is substantially smaller than expected for complete ferromagnetic ordering. The magnetization in fields of up to 6 kOe depends on the actual sample cooling conditions, and the hysteresis loop of a field-cooled sample is displaced along the H axis by ΔH. The above properties can be accounted for by the fact that the films are in a two-phase magnetic (ferromagnetic-antiferromagnetic) state induced by strong s-d exchange. The maximum value of Δ H was used to calculate the energy of exchange coupling between the ferromagnetic and antiferromagnetic parts of a sample.  相似文献   

17.
The equilibrium and photoinduced absorption spectra of copper-and silver-doped Bi12SiO20 crystals are studied. It is demonstrated that the impurity absorption is due to Ag2+, Ag+, Cu3+, Cu2+, and Cu+ ions occupying almost octahedral Bi3 positions. A mechanism of photochromism is suggested, involving changes in the charge states of copper and silver impurity ions according to schemes Cu2+-e → Cu3+ and Ag+-e → Ag2+.  相似文献   

18.
Experiments with the tetragonal antiferromagnet Nd2CuO4 in the temperature range 1.5 K < T < T N = 245 K show that the magnetic moments of Cu2+ possess an exchange-noncollinear magnetic structure of the “square” type, which has the form of an exchange doublet whose components exhibit different chiralities (Γ4 and Γ5 phases). Between these phases, consecutive phase transitions Γ4 ? Γ5 ? Γ4 with a change in chirality take place at temperatures T1 = 30 K and T2 = 70 K. The electron and nuclear magnetic resonances (natural frequencies and susceptibilities) associated with excitation of magnons (due to the magnetoelectric and antiferroelectric interactions) by an ac electric field E(t), as well as a variable magnetic field H(t) applied in the case of a constant electric field E0, are calculated. It is predicted that nuclear magnetic resonance is excited by an ac electric field at frequencies determined by hyperfine fields of the sublattices. The change in the resonance frequencies upon the above chiral phase transitions are analyzed (being first-order phase transitions, these transitions possess a number of features associated with the chirality of the magnetic structures).  相似文献   

19.
The heat capacity in a La0.8 Ag0.15 MnO3 manganite has been measured near the Curie temperature T C in applied magnetic fields up to 26 kOe to study the scaling critical behavior and to obtain the universality class. The conventional scaling fails in application to the manganites with a hysteresis and the strong sensitivity of T C to a magnetic field. However, the application of the improved scaling procedure designed by us allows yielding the good scaling the magnetic heat =0.23 capacity in La0.85Ag0.15MnO3, which may belong to a new universality class for systems with the strong spin-orbital coupling of t 2g -electrons, namely, double -Heisenberg with the critical exponent of the heat capacity α = ?0.23 and the critical exponent of the correlation radius v=0.7433. This new universality class is consistent with the crystal, magnetic and orbital symmetries for the La0.85Ag0.15MnO3. Scaling failure in the vicinity of T C in the range of t/H 1/2ν ≈ [?0.033;0.024] is understood by finite-size and other disordering effects when T →T C. It is remarkable that finite-size effect is consistent with grain size, L ≈ 50 μm, in the La0.85Ag0.15MnO3. The correlation radius, Lt ν ≈ 30.28 Å, estimated from the finite-size effect is of the same order of magnitude with the sizes of the ferromagnetic fluctuations and drops in manganites.  相似文献   

20.
The magnetic properties of manganites of the Nd1?xCaxMnO3 system with x≤0.15 have been studied. It is shown that, in the 0.06≤x≤0.1 interval, the results can be interpreted using a model according to which the concentrational transition from a weakly ferromagnetic (WFM) state (x=0) to a ferromagnetic (FM) state (x>0.15) proceeds via a mixture of the exchange-coupled FM and WFM phases. In the vicinity of T=9 K, samples with 0.06≤x≤0.1 exhibit a spontaneous magnetic phase transition involving reorientation of the magnetization vectors of the WFM and the exchange-coupled FM phases. In the temperature interval between 5 and 20 K, a sample with the composition Nd0.92Ca0.08MnO2.98 exhibits metamagnetic behavior. Magnetic phase diagrams in the H?T and T?x coordinates are presented. The appearance of the spin-reorientation transitions is explained in terms of the magnetic analog of the Jahn-Teller effect with allowance for the fact that, according to the neutron diffraction data, the magnetic moments of neodymium ions in the FM phase are parallel to the magnetic moments of manganese ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号