首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanotechnology has been a key area of funding and policy for the United States and globally for the past two decades. Since nanotechnology research and development became a focus and nanoproducts began to permeate the market, scholars and scientists have been concerned about how to assess the risks that they may pose to human health and the environment. The newest generation of nanomaterials includes biomolecules that can respond to and influence their environments, and there is a need to explore whether and how existing risk-analysis frameworks are challenged by such novelty. To fill this niche, we used a modified approach of upstream oversight assessment (UOA), a subset of anticipatory governance. We first selected case studies of “active nanomaterials,” that are early in research and development and designed for use in multiple sectors, and then considered them under several, key risk-analysis frameworks. We found two ways in which the cases challenge the frameworks. The first category relates to how to assess risk under a narrow framing of the term (direct health and environmental harm), and the second involves the definition of what constitutes a “risk” worthy of assessment and consideration in decision making. In light of these challenges, we propose some changes for risk analysis in the face of active nanostructures in order to improve risk governance.  相似文献   

2.
Nanotechnology is a broad and complex discipline that holds great promise for innovations that can benefit mankind. Yet, one must not overlook the wide array of factors involved in managing nanomaterial development, ranging from the technical specifications of the material to possible adverse effects in humans. Other opportunities to evaluate benefits and risks are inherent in environmental health and safety (EHS) issues related to nanotechnology. However, there is currently no structured approach for making justifiable and transparent decisions with explicit trade-offs between the many factors that need to be taken into account. While many possible decision-making approaches exist, we believe that multi-criteria decision analysis (MCDA) is a powerful and scientifically sound decision analytical framework for nanomaterial risk assessment and management. This paper combines state-of-the-art research in MCDA methods applicable to nanotechnology with a hypothetical case study for nanomaterial management. The example shows how MCDA application can balance societal benefits against unintended side effects and risks, and how it can also bring together multiple lines of evidence to estimate the likely toxicity and risk of nanomaterials given limited information on physical and chemical properties. The essential contribution of MCDA is to link this performance information with decision criteria and weightings elicited from scientists and managers, allowing visualization and quantification of the trade-offs involved in the decision-making process.  相似文献   

3.
Various stakeholders are increasingly interested in the potential toxicity and other risks associated with nanomaterials throughout the different stages of a product’s life cycle (e.g., development, production, use, disposal). Risk assessment methods and tools developed and applied to chemical and biological materials may not be readily adaptable for nanomaterials because of the current uncertainty in identifying the relevant physico-chemical and biological properties that adequately describe the materials. Such uncertainty is further driven by the substantial variations in the properties of the original material due to variable manufacturing processes employed in nanomaterial production. To guide scientists and engineers in nanomaterial research and application as well as to promote the safe handling and use of these materials, we propose a decision support system for classifying nanomaterials into different risk categories. The classification system is based on a set of performance metrics that measure both the toxicity and physico-chemical characteristics of the original materials, as well as the expected environmental impacts through the product life cycle. Stochastic multicriteria acceptability analysis (SMAA-TRI), a formal decision analysis method, was used as the foundation for this task. This method allowed us to cluster various nanomaterials in different ecological risk categories based on our current knowledge of nanomaterial physico-chemical characteristics, variation in produced material, and best professional judgments. SMAA-TRI uses Monte Carlo simulations to explore all feasible values for weights, criteria measurements, and other model parameters to assess the robustness of nanomaterial grouping for risk management purposes.  相似文献   

4.
This paper applies principles and methods from the framework of anticipatory governance to the case of what the National Research Council calls “complex engineered nanomaterials” (CENM). This framework does not aim to generate crystal ball visions or definitive answers, but rather provides guidance for uncovering, understanding, and addressing social, ethical, environmental, and policy issues that stem from emerging technologies. Thus, in anticipation of increased CENM research, CENM products, and their different governance challenges, we aim to lay the groundwork for the anticipatory governance of CENMs by mapping out what—according to the engineers and scientists, we interviewed who are working at the research level of these CENMs—will be the main issues and themes that we need to pay attention to in the near future. The structured interviews focused on three groups of questions: (1) potential and/or actual applications and/or products from the participant’s research; (2) environmental health and safety issues pertaining to both the participant’s research and CENMs generally; and (3) the future of CENMs. Without a foundational understanding to build on, social scientists, policymakers, and regulatory agencies will be at a loss about how to govern CENMs before they are widely implemented in society.  相似文献   

5.
Nanomaterials exhibit novel properties that enable new applications ranging from molecular electronics to energy production. Proactive consideration of the potential impacts on human health and the environment resulting from nanomaterial production and use requires methods for forecasting risk associated with of these novel materials. However, the potential variety of nanomaterials is virtually infinite and a case-by-case analysis of the risks these materials may pose is not possible. The challenge of forecasting risk for a broad number of materials is further complicated by large degrees of uncertainty concerning production amounts, the characteristics and uses of these materials, exposure pathways, and a scarcity of data concerning the relationship between nanomaterial characteristics and their effects on organisms and ecosystems. A traditional risk assessment on nanomaterials is therefore not possible at this time. In its place, an evolving process is needed for analyzing the risks associated with emerging nanomaterials-related industries.In this communication, we propose that such a process should include the following six key features: (1) the ability to generate forecasts and associated levels of uncertainty for questions of immediate concern; (2) a consideration of all pertinent sources of nanomaterials; (3) an inclusive consideration of the impacts of activities stemming from nanomaterial use and production that extends beyond the boundaries of toxicology and include full life cycle impacts; (4) the ability to adapt and update risk forecasts as new information becomes available; (5) feedback to improve information gathering; and (6) feedback to improve nanomaterial design. Feature #6 implies that the potential risks of nanomaterials must ultimately be determined as a function of fundamental, quantifiable properties of nanomaterials, so that when these properties are observed in a new material, they can be recognized as indicators of risk. Thus, the required risk assessment process for nanomaterials addresses needs that span from urgent, short-term questions dealing with nanomaterials currently in commerce, to longer-term issues that will require basic research and advances in theory. In the following sections we outline issues surrounding each of these six features and discuss.  相似文献   

6.
Possibilities for global governance of converging technologies   总被引:2,自引:2,他引:0  
The convergence of nanotechnology, modern biology, the digital revolution and cognitive sciences will bring about tremendous improvements in transformative tools, generate new products and services, enable opportunities to meet and enhance human potential and social achievements, and in time reshape societal relationships. This paper focuses on the progress made in governance of such converging, emerging technologies and suggests possibilities for a global approach. Specifically, this paper suggests creating a multidisciplinary forum or a consultative coordinating group with members from various countries to address globally governance of converging, emerging technologies. The proposed framework for governance of converging technologies calls for four key functions: supporting the transformative impact of the new technologies; advancing responsible development that includes health, safety and ethical concerns; encouraging national and global partnerships; and establishing commitments to long-term planning and investments centered on human development. Principles of good governance guiding these functions include participation of all those who are forging or affected by the new technologies, transparency of governance strategies, responsibility of each participating stakeholder, and effective strategic planning. Introduction and management of converging technologies must be done with respect for immediate concerns, such as privacy, access to medical advancements, and potential human health effects. At the same time, introduction and management should also be done with respect for longer-term concerns, such as preserving human integrity, dignity and welfare. The suggested governance functions apply to four levels of governance: (a) adapting existing regulations and organizations; (b) establishing new programs, regulations and organizations specifically to handle converging technologies; (c) building capacity for addressing these issues into national policies and institutions; and (d) making international agreements and partnerships. Several possibilities for improving the governance of converging technologies in the global self-regulating ecosystem are recommended: using open-source and incentive-based models, establishing corresponding science and engineering platforms, empowering the stakeholders and promoting partnerships among them, implementing long-term planning that includes international perspectives, and institute voluntary and science-based measures for risk management.
Mihail C. RocoEmail:
  相似文献   

7.
As the production of engineered nanomaterials quantitatively expands, the chance that workers involved in the manufacturing process will be exposed to nanoparticles also increases. A risk management system is needed for workplaces in the nanomaterial industry based on the precautionary principle. One of the problems in the risk management system is difficulty of exposure assessment. In this article, examples of exposure assessment in nanomaterial industries are reviewed with a focus on distinguishing engineered nanomaterial particles from background nanoparticles in workplace atmosphere. An approach by JNIOSH (Japan National Institute of Occupational Safety and Health) to quantitatively measure exposure to carbonaceous nanomaterials is also introduced. In addition to real-time measurements and qualitative analysis by electron microscopy, quantitative chemical analysis is necessary for quantitatively assessing exposure to nanomaterials. Chemical analysis is suitable for quantitative exposure measurement especially at facilities with high levels of background NPs.  相似文献   

8.
The dominant position of paper- and micrographics-based technologies for records management is challenged by emerging new storage systems. The need to document on paper and store on microform is reduced in applications where information is now communicated and administered in interactive computer-based systems. Properties of challenging technologies (magnetic mass memories, optical data disks) and associated systems concepts are compared with those of paper- and micrographics-based systems. Trends in shifting application advantages for the different records management alternatives are analyzed and guidelines presented on how to plan to avoid premature obsolescence of micrographics systems.  相似文献   

9.
10.
Despite the widespread commercial use of nanomaterials, regulators currently have a limited ability to characterize and manage risks. There is a paucity of data available on the current production and use of nanomaterials and extreme scientific uncertainty on most aspects of the risk assessment “causal chain.” Regulatory decisions will need to be made in the near-term in the absence formal quantitative risk assessments. The article draws on examples from three different regulatory contexts—baseline data monitoring efforts of the U.S. Environmental Protection Agency and California Department of Toxic Substances Control, prioritization of risk information in the context of environmental releases, and mitigation of occupational risks—to argue for the use of decision-analytic tools in lieu of formal risk assessment to help regulatory bodies. We advocate a “horses for courses” approach whereby existing analytical tools (such as risk ranking, multi-criteria decision analysis, and “control banding” approaches) might be adapted to regulators’ goals in particular decision contexts. While efforts to build new and modify existing tools are underway, they need greater support from funding and regulatory agencies because innovative approaches are needed for the “extreme” uncertainty problems that nanomaterials pose.  相似文献   

11.
The significant uncertainties associated with the (eco)toxicological risks of engineered nanomaterials pose challenges to the development of nano-enabled products toward greatest possible societal benefit. This paper argues for the use of risk governance approaches to manage nanotechnology risks and sustainability, and considers the links between these concepts. Further, seven risk assessment and management criteria relevant to risk governance are defined: (a) life cycle thinking, (b) triple bottom line, (c) inclusion of stakeholders, (d) risk management, (e) benefit–risk assessment, (f) consideration of uncertainty, and (g) adaptive response. These criteria are used to compare five well-developed nanotechnology frameworks: International Risk Governance Council framework, Comprehensive Environmental Assessment, Streaming Life Cycle Risk Assessment, Certifiable Nanospecific Risk Management and Monitoring System and LICARA NanoSCAN. A Sustainable Nanotechnology Decision Support System (SUNDS) is proposed to better address current nanotechnology risk assessment and management needs, and makes. Stakeholder needs were solicited for further SUNDS enhancement through a stakeholder workshop that included representatives from regulatory, industry and insurance sectors. Workshop participants expressed the need for the wider adoption of sustainability assessment methods and tools for designing greener nanomaterials.  相似文献   

12.
As presented at the 2016 TechConnect World Innovation Conference on 22–25 May 2016 in Washington DC, USA, the European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) ‘Nano Task Force’ proposes a Decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) consisting of three tiers to assign nanomaterials to four main groups with possible further subgrouping to refine specific information needs. The DF4nanoGrouping covers all relevant aspects of a nanomaterial’s life cycle and biological pathways: intrinsic material properties and system-dependent properties (that depend upon the nanomaterial’s respective surroundings), biopersistence, uptake and biodistribution, and cellular and apical toxic effects. Use, release, and exposure route may be applied as ‘qualifiers’ to determine if, e.g., nanomaterials cannot be released from products, which may justify waiving of testing. The four main groups encompass (1) soluble, (2) biopersistent high aspect ratio, (3) passive, and (4) active nanomaterials. The DF4nanoGrouping foresees a stepwise evaluation of nanomaterial properties and effects with increasing biological complexity. In case studies covering carbonaceous nanomaterials, metal oxide, and metal sulfate nanomaterials, amorphous silica and organic pigments (all nanomaterials having primary particle sizes below 100 nm), the usefulness of the DF4nanoGrouping for nanomaterial hazard assessment was confirmed. The DF4nanoGrouping facilitates grouping and targeted testing of nanomaterials. It ensures that sufficient data for the risk assessment of a nanomaterial are available, and it fosters the use of non-animal methods. No studies are performed that do not provide crucial data. Thereby, the DF4nanoGrouping serves to save both animals and resources.  相似文献   

13.
Solid‐state lighting is a rapidly evolving, emerging technology whose efficiency of conversion of electricity to visible white light is likely to approach 50% within the next several years. This efficiency is significantly higher than that of traditional lighting technologies, giving solid‐state lighting the potential to enable significant reduction in the rate of world energy consumption. Further, there is no fundamental physical reason why efficiencies well beyond 50% could not be achieved, which could enable even more significant reduction in world energy usage. In this article, we discuss in some detail: (a) the several approaches to inorganic solid‐state lighting that could conceivably achieve “ultra‐high,” 70% or greater, efficiency, and (b) the significant research questions and challenges that would need to be addressed if one or more of these approaches were to be realized.  相似文献   

14.
《Physica A》2005,352(1):113-130
Explaining embryonic development of multicellular organisms requires insight into complex interactions between genetic regulation and physical, generic mechanisms at multiple scales. As more physicists move into developmental biology, we need to be aware of the “cultural” differences between the two fields, whose concepts of “explanations” and “models” traditionally differ: biologists aiming to identify genetic pathways and expression patterns, physicists tending to look for generic underlying principles.Here we discuss how we can combine such biological and physical approaches into a cell-centered approach to developmental biology. Genetic information can only indirectly influence the morphology and physiology of multicellular organisms. DNA translates into proteins and regulatory RNA sequences, which steer the biophysical properties of cells, their response to signals from neighboring cells, and the production and properties of extracellular matrix (ECM). We argue that in many aspects of biological development, cells’ inner workings are irrelevant: what matter are the cell's biophysical properties, the signals it emits and its responses to extracellular signals. Thus we can separate questions about genetic regulation from questions about development. First, we ask what effects a gene network has on cell phenomenology, and how it operates. We then ask through which mechanisms such single-cell phenomenology directs multicellular morphogenesis and physiology. This approach treats the cell as the fundamental module of development.We discuss how this cell-centered approach—which requires significant input from computational biophysics—can assist and supplement experimental research in developmental biology. We review cell-centered approaches, focusing in particular on the Cellular Potts Model (CPM), and present the Tissue Simulation Toolkit which implements the CPM.  相似文献   

15.
Chemical-based risk assessment underpins the current approach to responsible development of nanomaterials (NM). It is now recognised, however, that this process may take decades, leaving decision makers with little support in the near term. Despite this, current and near future research efforts are largely directed at establishing (eco)toxicological and exposure data for NM, and comparatively little research has been undertaken on tools or approaches that may facilitate near-term decisions, some of which we briefly outline in this analysis. We propose a reprioritisation of NM risk research efforts to redress this imbalance, including the development of more adaptive risk governance frameworks, alternative/complementary tools to risk assessment, and health and environment surveillance.  相似文献   

16.
The basic procedures and rules for oversight of U.S. human subjects research have been in place since 1981. Certain types of human subjects research, however, have provoked creation of additional mechanisms and rules beyond the Department of Health & Human Services (DHHS) Common Rule and Food and Drug Administration (FDA) equivalent. Now another emerging domain of human subjects research—nanomedicine—is prompting calls for extra oversight. However, in 30 years of overseeing research on human beings, we have yet to specify what makes a domain of scientific research warrant extra oversight. This failure to systematically evaluate the need for extra measures, the type of extra measures appropriate for different challenges, and the usefulness of those measures hampers efforts to respond appropriately to emerging science such as nanomedicine. This article evaluates the history of extra oversight, extracting lessons for oversight of nanomedicine research in human beings. We argue that a confluence of factors supports the need for extra oversight, including heightened uncertainty regarding risks, fast-evolving science yielding complex and increasingly active materials, likelihood of research on vulnerable participants including cancer patients, and potential risks to others beyond the research participant. We suggest the essential elements of the extra oversight needed.  相似文献   

17.
Governance of nanotechnology is essential for realizing economic growth and other societal benefits of the new technology, protecting public health and environment, and supporting global collaboration and progress. The article outlines governance principles and methods specific for this emerging field. Advances in the last 10 years, the current status and a vision for the next decade are presented based on an international study with input from over 35 countries.  相似文献   

18.
Nanotechnology and the need for risk governance   总被引:10,自引:0,他引:10  
After identifying the main characteristics and prospects of nanotechnology as an emerging technology, the paper presents the general risks associated with nanotechnology applications and the deficits of the risk governance process today, concluding with recommendations to governments, industry, international organizations and other stakeholders. The International Risk Governance Council (IRGC) has identified a governance gap between the requirements pertaining to the nano- rather than the micro-/macro- technologies. The novel attributes of nanotechnology demand different routes for risk-benefit assessment and risk management, and at present, nanotechnology innovation proceeds ahead of the policy and regulatory environment. In the shorter term, the governance gap is significant for those passive nanostructures that are currently in production and have high exposure rates; and is especially significant for the several ‘active’ nanoscale structures and nanosystems that we can expect to be on the market in the near future. Active nanoscale structures and nanosystems have the potential to affect not only human health and the environment but also aspects of social lifestyle, human identity and cultural values. The main recommendations of the report deal with selected higher risk nanotechnology applications, short- and long-term issues, and global models for nanotechnology governance.  相似文献   

19.
《Physics letters. A》2020,384(29):126762
We show how continuous variable network with embedded non-Gaussian element can effectively prepare Schrödinger cat state using cubic phase state as elementary non-Gaussian resource, an entangling Gaussian gate, and homodyne measurement. The gate prepares superposition of two “copies” of an arbitrary input state well separated on the phase plane. A key feature of the cat-breeding configuration is that the measurement outcome provides multivalued information about the target system variables, which makes irrelevant the Heisenberg picture as it is applied to Gaussian networks. We present an intuitively clear interpretation of the emerging cat state, extendable to the circuits with other non-Gaussian elements.  相似文献   

20.
This paper analyzes scholarly papers published from 2003 through 2013 on the general theme of nanotechnology and governance. It considers three general points: (1) the “problem” of nanotechnology; (2) general lessons for governance obtained; and (3) prospects for aligning the US regulatory system to the next generation of complex engineered nano-materials. It argues that engineered nano-materials and products are coming to market within an already mature regulatory framework of decade-old statutes, long-standing bureaucratic rules and routines, narrowly directive judicial decisions, and embedded institutional norms. That extant regulatory regime shapes how policymakers perceive, define, and address the relative benefits and risks of both proximate and yet-to-be idealized nano-materials and applications. The paper concludes that fundamental reforms in the extant regime are unlikely short of a perceived crisis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号