首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have demonstrated the continuous wave laser operation of Yb3+:YVO4. For Ti:Al2O3 laser pumping at 985 nm, a maximum slope efficiency of 41.1% and a threshold pump power of 76 mW were obtained. The maximum output power was 433 mW at a laser wavelength of 1037 nm.Using a cw diode laser around 974 nm as a pump source, a slope efficiency of 10.9% and a maximum output power of 152 mW were achieved at a laser wavelength of 1039 nm. The laser threshold pump power was 608 mW with respect to the absorbed pump power. The effective emission cross-sections for the 2F5/22F7/2 transition were determined using the Füchtbauer–Ladenburg equation. The maxima of the effective absorption and emission cross-sections were found at 984.5 nm (6.74×10-20 cm2) in -po larization and 985.5 nm (4.28×10-20 cm2) also in -p olarization. The upper laser level lifetime was measured with suppression of radiation trapping and is around 318 s. PACS 42.55.Rz; 42.55.Xi; 42.70.Hj  相似文献   

2.
Biocompatible upconversion nanoparticles with multifunctional properties can serve as potential nanoprobes for multimodal imaging. Herein, we report an upconversion nanocrystal based on lanthanum fluoride which is developed to address the imaging modalities, upconversion luminescence imaging and magnetic resonance imaging (MRI). Lanthanide ions (Yb3+ and Ho3+) doped LaF3 nanocrystals (LaF3 Yb3+/Ho3+) are fabricated through a rapid microwave-assisted synthesis. The hexagonal phase LaF3 nanocrystals exhibit nearly spherical morphology with average diameter of 9.8 nm. The inductively coupled plasma mass spectrometry (ICP-MS) analysis estimated the doping concentration of Yb3+ and Ho3+ as 3.99 and 0.41%, respectively. The nanocrystals show upconversion luminescence when irradiated with near-infrared (NIR) photons of wavelength 980 nm. The emission spectrum consists of bands centred at 542, 645 and 658 nm. The stronger green emission at 542 nm and the weak red emissions at 645 and 658 nm are assigned to 5S2 → 5I8 and 5F5 → 5I8 transitions of Ho3+, respectively. The pump power dependence of luminescence intensity confirmed the two-photon upconversion process. The nanocrystals exhibit paramagnetism due to the presence of lanthanide ion dopant Ho3+ and the magnetization is 19.81 emu/g at room temperature. The nanocrystals exhibit a longitudinal relaxivity (r 1) of 0.12 s?1 mM?1 and transverse relaxivity (r 2) of 28.18 s?1 mM?1, which makes the system suitable for developing T2 MRI contrast agents based on holmium. The LaF3 Yb3+/Ho3+ nanocrystals are surface modified by PEGylation to improve biocompatibility and enhance further functionalisation. The PEGylated nanocrystals are found to be non-toxic up to 50 μg/mL for 48 h of incubation, which is confirmed by the MTT assay as well as morphological studies in HeLa cells. The upconversion luminescence and magnetism together with biocompatibility enables the adaptability of the present system as a nanoprobe for potential bimodal imaging.  相似文献   

3.
Thermal quenching of interconfigurational 5d-4f luminescence of Er3+ and Tm3+ ions in BaY2F8 crystals is studied in the temperature range of 330–790 K. The quenching temperatures are ~575 and ~550 K for Er3+ and Tm3+, respectively. It is shown that quenching of 5d-4f luminescence of Tm3+ ions is caused by thermally stimulated ionization of 5d electrons to the conduction band.  相似文献   

4.
Yb3+-Tm3+ co-doped up-conversion powder phosphors using Zn(AlxGa1-x)2O4 (ZAGO) as the host materials were synthesized via solid-state reaction successfully. In addition, the morphology, structural characterization and up-conversion luminescent properties were all investigated by scanning electron microscope (SEM), x-ray diffraction (XRD) and fluorescence spectrophotometer (F-7000), respectively. Under the excitation of a 980 nm laser, all as-prepared powders can carry out blue emission at about 477 nm (corresponding to 1G4 → 3H6 transition of Tm3+ ions), and red emission at about 691 nm (attributed to 3F3 → 3H6 transition of Tm3+ ions). Also, the influence of doping Al3+ ions were investigated. In brief, the doping of Al3+ ions has no effect on the position of emission peak. Howbeit the up-conversion efficiency and intensity of ZAGO:Yb,Tm phosphors are stronger than ZGO:Yb,Tm and ZAO:Yb,Tm phosphors, while the crystallinity is the opposite. More particularly, all as-prepared powder phosphors emit strong luminescence, which is observable by the naked eye, demonstrating the potential applications in luminous paint, luminescent dye, etc.  相似文献   

5.
We have demonstrated a novel tunable linear cavity Er3+/Yb3+ co-doped fiber laser, which utilizes amplified spontaneous emission as a secondary pump source so that it can operate in L-band. The tuning wavelength range can be up to 34 nm, from 1588.6 to 1622.6 nm, and the output power excursion of the laser at different wavelengths can be less than 0.4 dB by using a two sections of high-birefringence fiber loop mirror as the wavelength filter. The high output power of 200 mW is realized by using the cladding-pump.  相似文献   

6.
We report on the spectroscopy and, for the first time to our knowledge, continuous-wave and Q-switched diode-pumped laser operation of Er,Yb:YVO4 crystal. Absorption and emission spectra of the crystal were determined. Lifetimes of Er3+ 4 I 13/2 and 4 I 11/2 levels that define laser performance of the crystal were measured and parameters of energy transfer between Yb3+ and Er3+ ions were estimated. cw output power of 115 mW with slope efficiency of 5.4% was achieved at 1604 nm. In the Q-switched mode an average output power of 81 mW with slope efficiency of 3.5% and pulse duration of 150 ns was obtained. In quasi-cw regime maximal peak power of 610 mW with slope efficiency of 6.7% was demonstrated. PACS 42.55.Xi; 42.60.Gd; 42.70.Hj  相似文献   

7.
Hexagonal LaF3:Er3+/Yb3+ phosphor material has been synthesized by chemical precipitation method to obtain high near-infrared to green upconversion (UC) efficiency. Its thermal, structural and fluorescence properties have been studied. UC emission bands have been observed up to 315 nm in UV region. The effect of input pump power on the intensities of various emission bands has been studied in detail and photon avalanche UC mechanism has been identified. On increasing the excitation power, some bands have shown saturation in intensity. Also, at higher pump intensities two new UC bands were observed and their origin has been discussed. The phosphor has also been tested for possible UC-based fingerprint detection.  相似文献   

8.
The up-converting ZrO2:Yb3+,Er3+ nanomaterials were prepared with the combustion and sol–gel methods. FT-IR spectroscopy was used for analyzing the impurities. The crystal structures were characterized with X-ray powder diffraction and the mean crystallite sizes were estimated with the Scherrer formula. Up-conversion luminescence measurements were made at room temperature with IR-laser excitation at 977 nm. The IR spectra revealed the conventional and OH impurities for the combustion synthesis products. The structure of the ZrO2:Yb3+, Er3+ nanomaterials was cubic except for the minor monoclinic and tetragonal impurities obtained with the sol–gel method. The materials showed red (650–700 nm) and green (520–560 nm) up-conversion luminescence due to the 4F9/24I15/2 and (2H11/2, 4S3/2)→4I15/2 transitions of Er3+, respectively. The products obtained with the combustion synthesis exhibited the most intense luminescence intensity and showed considerable afterglow.  相似文献   

9.
10.
The mechanism of the upconversion processes in Y6O5F8: 2%Er3+/X%Yb3+ (X = 3, 10, 20) microtubes has been explored. The luminescent properties of the as prepared sample is investigated by utilizing up- /downconversion, decay and time resolve spectra. The results indicate that the red and green emission are clearly competitive depending on the Yb3+ concentration. High Yb3+ concentration induces the enhancement of the energy-back-transfer (EBT), process, which leads to the quenching of green emission and enhances the red emission. So it is possible to utilize the temporal evolutions of emission bands to deeply understand the color change UC mechanisms.  相似文献   

11.
Single crystals of double sodium-containing lanthanum and gadolinium molybdates doped with Tm3+ ions were synthesized by the Czochralski method. The spectroscopic properties of these crystals were investigated from the viewpoint of their use as active media in diode-pumped lasers. The polarized spectra of absorption on the 3 H 4 and 3 F 4 levels and the polarized spectra of luminescence due to the 3 F 4-3 H 6 laser transition were recorded, and the lifetimes of the 3 H 4 and 3 F 4 excited states of the Tm3+ ions were determined. The luminescence cross sections were calculated using the Füchtbauer-Ladenburg formula. The simulation of the decay curve of the 3 H 4 excited state according to the Golubov-Konobeev-Sakun method revealed that, in the crystals under investigation, the interaction between Tm3+ ions predominantly occurs through the dipole-dipole mechanism.  相似文献   

12.
Time-resolved excitation and emission spectra of SrF2: Er3+ upon selective excitation with synchrotron radiation in the VUV and ultrasoft x-ray ranges at T = 8 K were studied. The VUV luminescence of SrF2: Er3+ derives from high-energy interconfiguration 4f105d-4f11 transitions in the Er3+ ion. The VUV emission spectrum revealed, in addition to the 164.5-nm band (millisecond-range kinetics), a band at 146.4 nm (with a decay time of less than 600 ps). The formation of excitation spectra for the f-f and f-d transitions in the Er3+ ion is discussed.  相似文献   

13.
W Xu  J Chen  P Wang  Z Zhang  W Cao 《Optics letters》2012,37(2):205-207
Tm3+/Yb3+ codoped transparent glass ceramic containing β-PbF2 nanocrystals was successfully prepared. After thermal treatment, emissions from the 1G4 state of Tm3+ excited by 980 nm laser were greatly quenched by cross relaxation and the 700 nm luminescence from Tm3+:3F2,33H6 transition was strongly enhanced. A nearly monochromatic red luminescence band was observed. Based on the luminescence decay curves and Judd-Ofelt analysis, the strengthened cross relaxation played an important role in such phenomenon.  相似文献   

14.
A wavelength tunable laser system mode-locked by nonlinear polarization evolution based on a 3 cm-long homemade Er3+/Yb3+ codoped phosphate fiber has been reported. By simply adjusting the polarization controllers, the central wavelength of the mode-locked spectrum can be tuned over 1537.1–1563.3 nm continuously. Moreover, 264-fs pulse with 3-dB spectral width of 39.6 nm and peak power of 7.8 kW at a 7.55 MHz repetition rate is generated directly from the all-fiber ring cavity.  相似文献   

15.
We present a comparative analysis on the growth, the spectroscopic features, and the cw laser action of room-temperature Yb(5%):LiYF4 (YLF) and Yb(10%):KYF4 (KYF) crystals. Optical slope efficiencies of 33% and 52% have been demonstrated for Yb:YLF and Yb:KYF crystals, respectively. A remarkable wide wavelength tunability from 1.01 to 1.07 μm has been obtained for both laser crystals.  相似文献   

16.
Vacuum ultraviolet luminescence of Er3+ ions in LiYF4 and BaY2F8 crystals has been investigated. It is revealed that under excitation by 193 nm radiation from an ArF excimer laser the interconfigurational 5d–4f radiative transitions in Er3+ ions are observed. It is shown that from the LiYF4:Er crystal only the spin-forbidden luminescence (λ = 165 nm) is detected, whereas both the spin-forbidden (λ = 169 nm) and spin-allowed (λ = 160.5 nm) components are observed from the BaY2F8:Er crystal.  相似文献   

17.
Luminescence regularities have been studied in new erbium/ytterbium materials based on glasses and glass ceramics of a magnesium-aluminosilicate system containing nanoscale erbium/ytterbium zirconate titanate crystals with the pyrochlore structure. Lifetimes of Yb3+ and Er3+ ions in the 2 F5/2 state and in the 4I11/2 and 4I13/2 states, respectively, and the efficiency of Yb3+ → Er3+ energy transfer have been evaluated. The identified spectral-luminescent characteristics of the studied glasses and glass ceramics co-doped with erbium and ytterbium ions show that these materials are promising media for producing laser generation in the spectral range around 1.5 μm.  相似文献   

18.
Electron paramagnetic resonance (EPR) spectra of doped paramagnetic crystals LiLuF4:U3+ and LiYF4:Yb3+ have been investigated at a frequency of about 9.42 GHz in the temperature range of 10–20 K. The U3+ ion spectrum is characterized by g-factors g = 1.228 and g = 2.516, and contains the hyperfine structure due to the 235U isotope with nuclear spin I = 7/2 and natural abundance of 0.71%. The observed hyperfine interaction constants are A = 81 G and A = 83.8 G. Moreover, the spectrum reveals the well-resolved superhyperfine structure (SHFS) due to two groups of four fluorine ions forming the nearest surrounding of the U3+ ion. This SHFS contains up to nine components with the spacing between components being about 12.7 G. The SHFS is observed also in the EPR spectrum of the LiYF4:Yb3+ crystal; up to 17 components with spacing of about 3.7 G may be traced. Some parameters of the effective Hamiltonian of the SHF interaction are estimated, the contribution of covalent bonding of f-electrons with ligands into these parameters is discussed. Authors' address: Igor N. Kurkin, Kazan State University, Kremlevskaya ulitsa 18, Kazan 420008, Russian Federation  相似文献   

19.
The Er3+-Yb3+ codoped Al2O3 nanoparticles with an average particle size of about 50 nm have been synthesized by an arc discharge synthesis method. The green and red up-conversion emissions centered at about 526, 547 and 677 nm, corresponding respectively to the 2H11/24I15/2, 4S3/24I15/2 and 4F9/24I15/2 transitions of Er3+, were detected by a 978-nm semiconductor laser diode excitation. The Annealing has evident effect on the up-conversion emissions of the samples: The red up-conversion emission is noticeable before annealing; however, the green up-conversion emission becomes predominant after annealing. The mixture of (Er,Yb)3Al5O12 and α-(Al,Er,Yb)2O3 phases is more favorable for green up-conversion emissions due to an enhancement of the ESA (I) of 4I11/2+a photon→4F7/2 and ET (III) of 2F5/2(Yb3+)+4I11/2(Er3+)→2F7/2(Yb3+)+4F7/2(Er3+) processes. The two-photon absorption up-conversion process is involved in the green and red up-conversion emissions. The results have proved that arc discharge synthesis is a new promising preparation technology for optical materials. Supported by National Natural Science Foundation of China (Grant No. 10804015), the Scientific Research Foundation for Doctor of Liaoning Province (Grant No. 20071095), and the Educational Committee Foundation of Liaoning Province (Grant No. 2008123)  相似文献   

20.
Upconversion blue emissions of Tm3+-ion-heavy-doped NaY(WO4)2 crystals are investigated with three different near-infrared pump mechanisms. The dependence of upconversion efficiency on the pump mechanism is analyzed from the scope of the concentration quenching effect. Three cross-relaxation processes, , , and , which influence the upconversion dominantly in the Tm3+-heavy-doped system, are demonstrated theoretically and experimentally. The results indicate that Yb3+ ions can weaken the concentration quenching effect of Tm3+ ions significantly so that the blue emission efficiency can be enhanced by one order of magnitude. At the same time, the wavelength of the pump source also has considerable influence on both the population of some crucial energy levels and the upconversion mechanism. Experiments show that the upconversion blue emission in Tm3+/Yb3+ co-doped NaY(WO4)2 crystal under 980-nm laser diode excitation is the most intensive of these three different near-infrared pump mechanisms. The conclusions are confirmed by spectra measurements and calculations of Judd–Ofelt theory and Miyakawa–Dexter theory. PACS 42.70.Hj; 78.55.-m  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号