首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isothermal calorimetry and chemical shrinkage measurements are two independent techniques used to study the development of hydration in cementitious systems. In this study, calorimetry and chemical shrinkage measurements were combined and simultaneously performed on hydrating cement paste samples. Portland cement pastes with different water to cement ratios and a cement paste containing calcium sulfoaluminate clinker and anhydrite were studied. The combined calorimetry/chemical shrinkage test showed good reproducibility and revealed the different hydration behavior of sealed samples and open samples, i.e., samples exposed to external water during hydration. Large differences between sealed and open samples were observed in a Portland cement paste with low water to cement ratio and in the calcium sulfoaluminate paste; these effects are attributed to self-desiccation of the sealed pastes. Once the setup is fully automatized, it is expected that combined calorimetry/chemical shrinkage measurements can be routinely used for investigating cement hydration.  相似文献   

2.
Un-hydrated Portland cement consists of several anhydrous and reactive phases, that when mixed with water react to form hydrates. The main hydration product of Portland cement is calcium silicate hydrate (C–S–H). It is the main binding phase in a concrete system, hence is important to construction chemists. The concrete engineer measures the compressive strength of concrete after prescribed hydration periods, typically 1, 3, 7, 28 days. It is often convenient to mimic these intervals by stopping the hydration reaction at the same times. Several techniques can be employed to stop this hydration reaction. One of which is solvent-based and involves mixing a polar solvent such as acetone or isopropyl alcohol, with the hydrated cement. This mixing should be vigorous enough to blend the free water, in the partially hydrated cement system, with the polar solvent without altering the cement system’s matrix. The solvent-water mixture has a much lower boiling point and the mixture quickly evaporates out of the system. This achieves two goals. It stops the hydration reaction at the moment of solvent mixing, and it removes free water to prevent further hydration from occurring. This procedure theoretically leaves behind a dry, chemically unaltered, partially hydrated cement paste. In this way, pastes can be analyzed after the prescribed 1, 3, 7 or 28 days of hydration. This paper uses thermogravimetric analysis (TG) results to investigate the assumption that solvents have no thermodynamic or chemical effect on the hydrated cement paste phases.  相似文献   

3.
Electric arc furnace dust (EAFD) is termed as a hazardous waste due to its contamination with heavy metals. Inertization of such very fine dust can be occurred via stabilization and solidification process within the hydrated Portland cement matrix. In this paper, the effect of the addition of various ratios of EAFD on the properties of the hardened Portland cement paste was investigated. Compressive strength, chemically combine water and free lime contents were determined. In addition, phase composition using XRD; DTA analysis; as well as microstructure of the formed hydrates for some selected samples were investigated using SEM. The obtained results showed that the paste containing 1/mass% EAFD give the highest compressive strength values at most hydration ages, specially the later ages, compared to the neat Portland cement blank paste. Whileas, the pastes containing 3 and 5/mass% EAFD showed lower values of compressive strength compared to those of the blank paste.  相似文献   

4.
Water within pores of cementitious materials plays a crucial role in the damage processes of cement pastes, particularly in the binding material comprising calcium-silicate-hydrates (C-S-H). Here, we employed Grand Canonical Monte Carlo simulations to investigate the properties of water confined at ambient temperature within and between C-S-H nanoparticles or "grains" as a function of the relative humidity (%RH). We address the effect of water on the cohesion of cement pastes by computing fluid internal pressures within and between grains as a function of %RH and intergranular separation distance, from 1 to 10 ?. We found that, within a C-S-H grain and between C-S-H grains, pores are completely filled with water for %RH larger than 20%. While the cohesion of the cement paste is mainly driven by the calcium ions in the C-S-H, water facilitates a disjoining behavior inside a C-S-H grain. Between C-S-H grains, confined water diminishes or enhances the cohesion of the material depending on the intergranular distance. At very low %RH, the loss of water increases the cohesion within a C-S-H grain and reduces the cohesion between C-S-H grains. These findings provide insights into the behavior of C-S-H in dry or high-temperature environments, with a loss of cohesion between C-S-H grains due to the loss of water content. Such quantification provides the necessary baseline to understand cement paste damaging upon extreme thermal, mechanical, and salt-rich environments.  相似文献   

5.
Using the inverse geometry spectrometer QENS at the Intense Pulsed Neutron Source of the Argonne National Laboratory, we collected quasielastic and inelastic neutron scattering spectra of hydrated tricalcium and dicalcium silicate, the main components of ordinary Portland cement. Data were obtained at different curing time, from a few hours to several months. Both the quasielastic and inelastic spectra have been analyzed at the same time according to the relaxing cage model, which is a model developed to describe the dynamics of water at supercooled temperatures. Short-time and long-time dynamics of hydration water in hydrated cement pastes as a function of the curing time have been simultaneously obtained. The results confirm the findings reported in previous experiments showing that it is possible to fit consistently the quasielastic and inelastic spectra giving insights on the effect of the curing time on the short-time vibrational dynamics of hydration water.  相似文献   

6.
Main hydration products of two cement pastes, i.e. CSH-gel, portlandite (P) (and specific surface S) were studied by static heating, and by SEM, TEM and XRD, as a function of cement strength (C-33 and C-43) hydration time (th) and subsequent hydration in water vapour.Total change in mass on hydration and air drying, Mo, increased with strength of cement paste and with hydration time. Content of water escaping at 110 to 220°C, defined as water bound with low energy, mainly interlayer and hydrate water, was independent on cement strength but its content increased with (th). Content of chemically bound (zeolitic) water in CSH-gel, escaping at 220-400°C, was slightly dependent on strength and increased with (th). It was possibly derived from the dehydroxylation of CSH-gel and AFm phase. Portlandite water, escaping at 400-500°C, was independent on cement strength and was higher on longer hydration. Large P crystals were formed in the weaker cement paste C-33. Smaller crystals were formed in C-43 but they increased with (th). Carbonate formated on contact with air (calcite, vaterite and aragonite), decomposed in cement at 600-700oC. It was high in pastes C-33(1 month) and C-43(1 month), i.e. 5.7 and 3.3%, respectively; it was less than 1% after 6 hydration months (low sensitivity to carbonation) in agreement with the XRD study showing carbonates in the air dry paste (1month), and its absence on prolonged hydration (6 months) and on acetone treatment. Water vapour treatment of (6 months) pastes or wetting-drying increased this sensitivity.Nanosized P-crystals, detected by TEM, could contribute to the cement strength; carbonate was observed on the rims of gel clusters.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

7.
The use of active mineral additions is an important alternative in concrete design. Such use is not always appropriate, however, because the heat released during hydration reactions may on occasion affect the quality of the resulting concrete and, ultimately, structural durability. The effect of adding up to 20% silica fume on two ordinary Portland cements with very different mineralogical compositions is analyzed in the present paper. Excess gypsum was added in amounts such that its percentage by mass of SO3 came to 7.0%. The chief techniques used in this study were heat conduction calorimetry and the Frattini test, supplemented with the determination of setting times and X-ray diffraction. The results obtained showed that replacing up to 20% of Portland cement with silica fume affected the rheology of the cement paste, measured in terms of water demand for normal consistency and setting times; the magnitude and direction of these effects depended on the mineralogical composition of the clinker. Hydration reactions were also observed be stimulated by silica fume, both directly and indirectly – the latter as a result of the early and very substantial pozzolanic activity of the addition and the former because of its morphology (tiny spheres) and large BET specific surface. This translated into such a significant rise in the amounts of total heat of hydration released per gram of Portland cement at early ages, that silica fume may be regarded in some cases to cause a synergistic calorific effect with the concomitant risk of hairline cracking. The addition of excess gypsum, in turn, while prompting and attenuation of the calorimetric pattern of the resulting pastes in all cases, caused the Portland cement to generate greater heat of hydration per gram, particularly in the case of Portland cement with a high C3A content.  相似文献   

8.
The properties of high-strength concrete under standard curing condition (20 °C, 95% RH), high-temperature curing condition (50 °C) and temperature match curing condition were comparatively investigated. The cumulative hydration heat of composite binder containing fly ash and silica fume is lower than that of composite binder containing the same amount of slag. Addition of fly ash and silica fume clearly reduces the adiabatic temperature rise of concrete, but adding slag leads to higher adiabatic temperature rise than Portland cement concrete. High-temperature curing condition and temperature match curing condition lead to the sustainable increase in compressive strength of concrete containing mineral admixture, but they hinder the later-age strength development of Portland cement concrete. For cement–slag paste and cement–fly ash–silica fume paste, the non-evaporable water contents increase significantly and the pore structures are much finer under high-temperature curing condition and temperature match curing condition, which negatively affect the pore structure of Portland cement paste. The differences in properties of concrete among three curing conditions become smaller with time. The properties obtained under standard curing condition can approximately reflect the long-term properties of high-strength concrete in the real structure. The concrete prepared with cement–fly ash–silica fume composite binder has the highest compressive strength, finest pore structure and best resistance to chloride permeability under any curing condition. This composite binder is very suitable to prepare the high-strength concrete with large volume.  相似文献   

9.
Molasses is generally used as a grinding aid in cement and as a water reducer and retarder in concrete. In China, the output primarily consists of sugarcane molasses. In this paper, the effects of sugarcane molasses on the physical performance and hydration chemistry of conventional Portland cement were investigated. The setting times, the normal consistency of cement pastes, the compressive strengths and fluidities of the mortars were respectively determined according to Chinese Standard GB/T 1346, GB/T17671 and GB/T 2419. The effect of molasses on the hydration kinetics of cement was investigated using a calorimeter. The hydration products and pore size distribution of the cement pastes were analysed by X-ray powder diffraction, differential scanning calorimetry and a mercury injection apparatus. The results show that a small amount of sugarcane molasses retards the setting and hardening of cement paste and increases the fluidity of cement mortar, while excess molasses accelerates the setting and hardening. Molasses improves significantly the compressive strength at 3d due to the decrease of porosity. The addition of 1.0 % molasses accelerates the formation of ettringite, prevents the second hydration of aluminate phase and delays the hydration of C3S.  相似文献   

10.
The hydration properties of slag sulfate cement (SSC), slag Portland cement (PSC), and ordinary Portland cement (POC) were compared in this study by determining the compressive strength of pastes, the hydration heat of binders within 72 h, the pore structure, the hydration products, and the hydration degree. The results indicated that main hydration products of PSC paste and POC paste are calcium hydroxide and C–S–H gel, while those of SSC paste are ettringite and C–S–H gel from the analyses of XRD, TG–DTA, and SEM. At the early curing age, the compressive strength depends on the clinker content in the cementitious system, while at the late curing age, which is related to the potential reactivity of slag. From hydration heat analysis, the cumulative hydration heat of PSC is lower than that of POC, but higher than that of SSC. Slag can limit chemical reaction and the delayed coagulation of gypsum, which also plays a role in the early hydration. So SSC shows the lowest heat release and slag can’t be simulated without a suitable alkaline solution. Based on MIP analysis, the porosity of POC paste is the smallest while the average pore size is the biggest. At the age of 90 days, the compressive strength of SSC can get higher development because of its relative smaller pore size than that of PSC and POC paste.  相似文献   

11.
Although the literature presents intensive studies based on monitoring cement hydration in adiabatic and semi-adiabatic environments, such as non-conventional differential thermal analysis (NCDTA) systems, studies of cement hydration in controlled climatic chambers are very rare. Using three W/C ratios (0.5, 0.6 and 0.7) and three relative humidity conditions (60, 80 and 100%) at 25 °C, the authors analyzed in real time the evolution of cement hydration reaction during the first 24 h in an environmental-controlled chamber. The main objective of this paper is to present two new developed systems of NCDTA (NNCDTA) and non-conventional TG and to show, using high-strength sulfate-resistant Portland cement pastes in a controlled chamber as application examples, how the developed systems measure on real time the thermal effects and the mass changes that occur during hydration and carbonation reactions. The captured CO2 mass can be quantified as it occurs by carbonation curves. The results are in agreement with the mechanical and structural properties of the used pastes and with their TG/DTG data, after being processed by different operational conditions. Carbonation for 24 h alters significantly the cement hydrated paste composition, resulting in final poor mechanical resistance properties. However, carbonation for 1 h, in specific conditions, enhances them when compared to a non-carbonated reference paste, due to a final higher content of silica and alumina hydrated phases and to a lower mass ratio between that of their combined water and their total mass as well.  相似文献   

12.
This research provides a fundamental understanding of the early stage hydration of Portland cement paste, tricalcium aluminate (C3A) paste at water to cement ratio of 0.5 and C3A suspension at water to cement ratio of 5.0 modified by 2 or 4 mass% of sodium carbonate. A high conversion of unreacted clinker minerals to gel-like hydration products in the cement-Na2CO3 pastes takes place rapidly between 1st to 24th h. Contrary the Ca(OH)2 formation within the same time interval is retarded in the excess of CO32− ions due to intensive rise and growth of CaCO3 crystals in hydrated cement. Later, the conversion of clinker minerals to the hydrate phase is reduced and higher contents of calcite and vaterite relative to that of Ca(OH)2 in comparison with those found in the Portland cement paste are observed. As a consequence a decrease in strength and an increase in porosity between hardened Portland cement paste without sodium carbonate and those modified by Na2CO3 are observed. C3A hydrates very quickly with sodium carbonate between 1st and 24th h forming hydration products rich in bound water and characterized also by complex salts of (x)C3A·(y)CO2·(zH2O type, whereas C3A-H2O system offers C3AH6 as the main hydration product. Higher content of the formed calcium aluminate hydrates in C3A-Na2CO3-H2O system also contributes to early strength increase of Portland cement paste.  相似文献   

13.
Internal curing with superabsorbent polymers (SAP) is a method for promoting hydration of cement and limiting self-desiccation, shrinkage and cracking in high-performance, and ultra high-performance concrete with low water-to-binder ratio. SAP are introduced in the dry state during mixing and form water-filled inclusions by absorbing pore solution. The absorbed solution is later released to the cement paste during hydration of the cement. In this paper, cement pastes with low water-to-binder ratios incorporating superplasticizer and different dosages of SAP and corresponding additional water were prepared. Reference cement pastes without SAP but with the same amount of water and superplasticizer were also mixed. Isothermal calorimetry was used to measure hydration heat flow. Water entrainment by means of SAP increased the degree of hydration at later hydration times in a manner similar to increasing the water-to-binder ratio. Addition of SAP also delayed the main calorimetric hydration peak compared to the reference pastes, however, in a less prominent manner than the increase in water-to-cement ratio.  相似文献   

14.
Calorimetry in the studies of cement hydration   总被引:1,自引:0,他引:1  
Calorimetry was applied to an investigation of the early hydration of Portland cement (PC)–calcium aluminate cement (CAC) pastes. The heat evolution measurements were related to the strength tests on small cylindrical samples and standard mortar bars. Different heat-evolution profiles were observed, depending on the calcium aluminate cement/Portland cement ratio. The significant modification of Portland cement heat evolution profile within a few hours after mixing with water was observed generally in pastes containing up to 25% CAC. On the other hand the CAC hydration acceleration effect was also obtained with the 10% and 20% addition of Portland cement. As one could expect the compressive and flexural strength development was more or less changed—reduced in the presence of larger amount of the second component in the mixture, presumably because of the internal cracks generated by expansive calcium sulfoaluminate formation.  相似文献   

15.
Thermogravimetry (TG) and derivative thermogravimetry (DTG) were used to analyze the early stages of hydration of a high-initial strength and sulphate resistant Portland cement (HS SR PC) within the first 24 h of setting. The water/cement (W/C) mass ratios used to prepare the pastes were 0.35, 0.45, and 0.55. The hydration behavior of the pastes was analyzed through TG and DTG curves obtained after different hydration times on calcined cement mass basis to have a same composition basis to compare the data. The influence of the W/C ratio on the kinetics of the hydration process was done through the quantitative analysis of the combined water of the main hydration products formed in each case. TG and DTG curves data calculated on calcined mass basis of all the results were converted to initial cement mass basis to have an easier way to analyze the influence of the W/C ratio on the free and combined water of the different main hydrated phases. The gypsum content of the pastes was totally consumed in 8 h for all cases. A significant part of the hydration process occurs within the first 14 h of setting and at 24 h the highest hydration degree, indicated by the respective content of formed calcium hydroxide, occurs in the case of the highest initial water content of the paste.  相似文献   

16.
The cement industry is one which most emits polluting gases to the environment, due to the calcium carbonate calcination, as well as to the burning of fossil fuels during the manufacturing process. Metakaolin (MK), in partial substitution to cement in its applications, is having a special worldwide growing role, for the technological increment due to its pozzolanic activity and mainly to the reduction of those emissions. In the present paper, the effect of pozzolanic activity of metakaolin was analyzed by thermal analysis in pastes and mortars of type II Portland cement in the first three days of the hydration, during which, relevant initial stages of the hydration process occur. By non-conventional differential thermal analysis (NCDTA), paste and mortar samples containing 0, 10, 20, 30 and 40% of metakaolin in cement mass substitution and using a 0.5 water/(total solids) mass ratio, were evaluated. The NCDTA curves, after normalization on cement mass basis and considering the heat capacity of each reactant, indicate that the pozzolanic activity behavior of metakaolin is different in pastes and mortars. Through the deconvolution of the normalized NCDTA curve peaks, it can be seen that ettringuite formation increases as cement substitution degree (CSD) increases, in both cases. Tobermorite formation is more enhanced in mortars than in pastes by MK, with a maximum formation at 30% of CSD. In the pastes, tobermorite formation increases as CSD increases but it is practically the same at 30 and 40% of CSD.  相似文献   

17.
Calorimetry was applied to follow the hydration in the Portland cement–dolomite–limestone mixtures. In the experiments the limestone additive of various fineness (standard component of various common cements), as well as the dolomite additive (not a standard component) were used. The rate of hydration versus time for common cements reflects the proper setting and early hardening during the first days after mixing with water (two or three peaks and the induction period between them). The aim of measurements presented in this work was to show the course of heat evolution curve and the heat evolved values, equivalent to the acceleration/retardation of hydration, in case of the pastes produced from Portland cement and the carbonate additives mixed in variable proportions, as well as to verify the results by other methods. The rate of heat evolution accompanying cement paste hydration, total heat evolved, conductivity of hydrating suspension and rheological (flow) properties versus time are modified by the fine grained carbonate additives. This is due to the hypothetical nucleating effect of limestone and dolomite.  相似文献   

18.
Pozzolanic cement blends were prepared by the partial substitution of ordinary Portland cement (OPC) with different percentages of burnt clay (BC), Libyan clay fired at 700 °C, of 10, 20, and 30%. The pastes were made using an initial water/solid ratio of 0.30 by mass of each cement blend and hydrated for 1, 3, 7, 28, and 90 days. The pozzolanic OPC–BC blend containing 30% BC was also admixed with 2.5 and 5% silica fume (SF) to improve the physicomechanical characteristics. The hardened pozzolanic cement pastes were subjected to compressive strength and hydration kinetics tests. The results of compressive strength indicated slightly higher values for the paste made of OPC–BC blend containing 10% BC The results of DSC and XRD studies indicated the formation and later the stabilization of calcium silicates hydrates (CSH) and calcium aluminosilicate hydrates (C3ASH4 and C2ASH8) as the main hydration products in addition to free calcium hydroxide (CH). Scanning electron microscopic (SEM) examination revealed that the pozzolanic cement pastes made of OPC–BC mixes possesses a denser structure than that of the neat OPC paste. Furthermore, the addition of SF resulted in a further densification of the microstructure of the hardened OPC–BC–SF pastes; this was reflected on the observed improvement in the compressive strength values at all ages of hydration.  相似文献   

19.
Oil well cementing is a vital operation to assure casing stability and zonal isolation for oil and gas exploration. However, some scenarios demand the cemented region to withstand high thermal gradients and imposed deformations, as occurs in the case of oil wells subjected to cyclic steam injection at temperatures up to 250 °C, to reduce oil viscosity and to increase well pressure to facilitate heavy oil recovery. In this paper, the hydration of ductile special cement systems using styrene-butadiene latex (SBR) and carboxylated styrene-butadiene latex (XSBR) addition was studied by conduction calorimetry. The resulting heat flow curves, presented in log–log plots, were used to analyze the influence of those copolymers on the hydration stages of three families of cement pastes of different complexity. The simpler cement systems (SCCS) contained water, oil well Portland cement class G and SBR or XSBR in its composition. In medium complexity systems silica fume was added and in the higher complexity ones (HCCS), superplasticizer as well. The primary objective of adding those copolymers into the Portland cement paste is to obtain higher ductility properties after setting, silica fume to have good thermal stability up to 300 °C, while superplasticizer was added to guarantee good workability. Rheological tests were carried out to evaluate the effect of the copolymers on the composite viscosity. Thermogravimetric analysis of selected SCCS and HCCS samples was performed to quantify the main formed phases up to 24 h of cement hydration. From the obtained results, it was noticed that SBR and XSBR addition substantially affects hydration kinetics at all early age stages. Starting from pre-induction and induction periods, the main observed effect during these stages, was related to the increased viscosity of the pastes, which was higher in XSBR containing pastes, retarding the hydration reactions of respective following stages, when compared to pastes with the same cementitious matrix without copolymer addition.  相似文献   

20.
Titanium dioxide (TiO2) is an excellent photocatalytic material that imparts biocidal, self-cleaning and smog-abating functionalities when added to cement-based materials. The presence of TiO2 influences the hydration process of cement and the development of its internal structure. In this article, the hydration process and development of a pore network of cement pastes containing different ratios of TiO2 were studied using two noninvasive techniques (ultrasonic and NMR). Ultrasonic results show that the addition of TiO2 enhances the mechanical properties of cement paste during early-age hydration, while an opposite behavior is observed at later hydration stages. Calorimetry and NMR spin–lattice relaxation time T1 results indicated an enhancement of the early hydration reaction. Two pore size distributions were identified to evolve separately from each other during hydration: small gel pores exhibiting short T1 values and large capillary pores with long T1 values. During early hydration times, TiO2 is shown to accelerate the formation of cement gel and reduce capillary porosity. At late hydration times, TiO2 appears to hamper hydration, presumably by hindering the transfer of water molecules to access unhydrated cement grains. The percolation thresholds were calculated from both NMR and ultrasonic data with a good agreement between both results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号