首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
聚类分析辅助中药寡糖电泳分析鉴定中药   总被引:5,自引:0,他引:5  
郭怀忠  吴芳  张伟泉  刘芳黎 《色谱》2013,31(10):1001-1004
基于中药多糖结构的复杂性和特征性,针对多糖部分降解后的寡糖片段,建立了一种采用毛细管区带电泳法(CZE)分离分析中药寡糖,并利用其特征性电泳谱图信息,结合聚类分析(CA)进行中药鉴定的方法。该方法以1-苯基-3-甲基-5-吡唑啉酮(PMP)为寡糖柱前衍生化试剂,对3个科属的6种中药如黄精、玉竹等同时进行鉴定。采用的电泳条件:未涂层熔融石英毛细管柱(49 cm(有效长度40 cm)×50 μm),以50 mmol/L磷酸盐缓冲液(pH 2.5)为运行缓冲液,检测波长为245 nm,运行电压为15 kV,虹吸进样10 cm×4 s,柱温为室温。结果表明聚类分析辅助中药寡糖电泳分析法可有效用于3个科属6种中药的鉴定。本方法结果可靠,重现性好,可以作为中药鉴定的一种有效手段。  相似文献   

2.
王仲孚  张英  林雪  黄琳娟 《化学学报》2007,65(23):2761-2764
以1-苯基-3-甲基-5-吡唑啉酮(PMP)为衍生化试剂对寡糖链进行标记, 用氨水替代氢氧化钠溶液作碱性介质, 衍生化反应后氨水可通过干燥除去, 省去了脱盐处理过程, 衍生化的寡糖可直接进行激光解吸电离质谱分析. 建立起了PMP衍生化寡糖的RP-HPLC分离分析模式, 在此HPLC分析条件下, 可以对标记的寡糖链进行样品分离及制备.  相似文献   

3.
 采用1-苯基-3-甲基-5-吡唑啉酮(PMP)衍生糖类物质,通过简化衍生方法,优化分析条件,采用胶束电动毛细管色谱(MEKC)和高效液相色谱(HPLC)两种方法对5种还原单糖的PMP衍生物实现了良好的分离。5种还原单糖衍生物的保留时间的重现性较好(MEKC法的相对标准偏差(RSD)小于5%(n=5),HPLC法的RSD为0.23%(n=5))。用所建立的两种方法对实际样品中的糖进行了分析,结果表明所建方法可作为实际样品中单糖分析的常规方法。  相似文献   

4.
中药大黄多糖中单糖组成的毛细管区带电泳分析   总被引:7,自引:2,他引:5  
以1-苯基-3-甲基-5-吡唑啉酮(PMP)为单糖的衍生化试剂,建立毛细管区带电泳(CZE)同时分离分析8种常见还原单糖PMP衍生物的方法。将该方法用于中药大黄多糖(RTP)的单糖组成及其摩尔比率的测定。结果表明,在pH 10.8和150 mmol/L硼砂缓冲溶液、10kV分离电压、25℃柱温的优化条件下,8种单糖衍生物实现了良好的分离,并证实RTP由阿拉伯糖、葡萄糖、半乳糖、葡萄糖醛酸和半乳糖醛酸5种单糖组成,其摩尔比为8.01∶5.01∶30.30∶1.00∶1.56;样品测定回收率为96.4%~105.3%。该方法灵敏、快速、准确,可用于中药RTP的组成分析。  相似文献   

5.
以1-(2-萘基)-3-甲基-5-吡唑啉酮(NMP)作为柱前衍生试剂,建立了简单、灵敏的糖类组分的反相高效液相色谱测定方法。NMP与糖在氨为催化剂的条件下,于70 ℃下反应可获得稳定的衍生产物。在Hypersil ODS 2反相色谱柱上,实现了8种单糖的基线分离。衍生物线性相关系数均大于0.9985,检出限为0.58~1.1 pmol。利用柱后在线串联质谱的电喷雾电离正离子模式监测,获得了各组分的质谱定性及裂解规律,特别是m/z 473的特征碎片离子可作为单糖NMP衍生物的判定依据。与1-苯基-3-甲基-5-吡唑啉酮(PMP)相比,NMP对糖的衍生化具有灵敏、简单、质谱裂解规律性强、重现性好等优点。该方法用于测定油菜花粉多糖中的单糖组成,结果令人满意。  相似文献   

6.
利用高效凝胶渗透色谱(HPGPC)测定芦荟浓缩液和芦荟粉中多糖的纯度和相对分子质量,使用1-苯基-3-甲基-5-吡唑啉酮(PMP)作为柱前衍生试剂分别对样品和其水解产物进行衍生,结合高效液相色谱(HPLC)分离和电喷雾-离子阱质谱(ESI-MS)检测分析其单糖组成.结果表明:组成芦荟中多糖的单糖主要是甘露糖和葡萄糖.  相似文献   

7.
建立了一种柱前衍生高效液相色谱法同时测定海带中岩藻聚糖的单糖及糖醛酸组成的方法.岩藻聚糖经4 mol/L三氟乙酸降解后,用1-苯基-3-甲基-5-吡唑啉酮(PMP)进行衍生化,并采用配有紫外检测器的反相高效液相色谱仪在250 nm波长下进行测定,实现了7种单糖和糖醛酸的良好分离.结果表明:该岩藻聚糖样品由5种单糖和2种...  相似文献   

8.
建立了测定仙草多糖组成及其含量的超高效液相色谱-串联四极杆质谱分析方法。仙草样品在碱性条件下用沸水提取,提取液经固相萃取小柱净化后加三氟乙酸在110℃水解,然后采用1-苯基-3-甲基-5-吡唑啉酮(PMP)衍生。以Waters ACQUITY UPLC BEH C18(2.1 mm i.d.×50 mm,1.7μm)为分析柱,乙腈和缓冲盐溶液(0.5 mmol/L乙酸铵-0.05%乙酸)为流动相进行梯度洗脱分离,流速0.5 mL/min,电喷雾正离子多反应监测模式检测,内标法定量。结果显示8种单糖在1~100μmol/L浓度范围内呈良好的线性关系,相关系数r2均大于0.96,方法的回收率为84%~112%,相对标准偏差(RSD)不高于4.7%。仙草多糖由甘露糖、鼠李糖、核糖、葡萄糖醛酸、半乳糖醛酸、葡萄糖、半乳糖和木糖8种单糖组成,其摩尔百分比为7.4%、5.7%、4.2%、0.9%、28.4%、26.5%、16.4%和10.6%。该法简单、快速、灵敏高、重现性好,可用于仙草多糖的单糖组成分析和含量测定。  相似文献   

9.
以1-(4-异丙基)苯基-3-甲基-5-吡唑啉酮(PPMP)为衍生化试剂在氨水介质中对壳寡糖链进行衍生化,衍生化产物用RP-HPLC分离和ESI-MS分析。结果表明在确定的衍生化条件下,PPMP和壳寡糖的衍生化产物主要为单分子衍生物,此单分子PPMP衍生物在ESI-MS的正负离子模式下均有较好的响应,并且在RP-HPLC柱上能够实现很好的分离。据此建立了PPMP柱前衍生HPLC/ESI-MS在线联用检测壳寡糖混合物组成的方法。该法可作为壳寡糖样品在质量控制、构效关系研究等方面的方法参考。  相似文献   

10.
啤酒中单糖的衍生化HPLC-ESI-MS测定方法研究   总被引:4,自引:0,他引:4  
单糖类样品在溶液中非常稳定,难于离子化,不适合于进行ESI-MS检测。采用1-苯基-3-甲基-5-吡唑啉酮(PMP)将糖类物质衍生化,HPLC-ESI-MS在线联用,选择性离子扫描方式对几种啤酒样品中的5种单糖进行了分离检测。检出限可达到80pg。  相似文献   

11.
利用自组装的毛细管电泳-激光诱导荧光装置,研究了多种寡糖-8-氨基芘-1,3,6-三磺酸(寡糖APTS)衍生物的分离。考察了电泳介质、浓度及pH对寡糖-APTS 衍生物分离的影响,在酸性和碱性条件下,分别实现了痕量寡糖标准品及葡聚糖水解产物的高效分离。  相似文献   

12.
利用自组装的毛细管电泳-激光诱导荧光装置,研究了多种寡糖-8-氨基芘-1,3,6-三磺酸(寡糖-APTS)衍生物的分离.考察了电泳介质、浓度及pH对寡糖-APTS衍生物分离的影响,在酸性和碱性条件下,分别实现了痕量寡糖标准品及葡聚糖水解产物的高效分离  相似文献   

13.
A method, using capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection for analyzing chitin oligosaccharides is described. Chitin oligosaccharides were derivatized with 9-aminopyrene-1,4,6-trisulfonate (APTS) via reductive amination at 37 degrees C for 16 h (optimized conditions). The APTS-chitin oligosaccharides were analyzed using either an acidic citric acid-phosphate buffer or an alkaline borate buffer. The effects of buffer types, buffer pH values, and buffer concentrations on the separation were examined. The analytes were successfully separated by using a pH 4.6 citric acid-phosphate within 19 min. The APTS-derivatized chitin monosaccharide (D-glucosamine) migrated first. The analytes were also completely separated by using a pH 9.0 borate buffer within 24 min. Moreover, the specificity of enzyme digestion on chitin polysaccharides using the optimized APTS labeling procedure and the CE-LIF method was demonstrated.  相似文献   

14.
A novel method for fast profiling of complex oligosaccharides released from glycoproteins based on microchip electrophoresis (mu-CE) is presented here. The characterization of separation conditions, i.e., the composition, concentration and pH of running buffer as well as the applied voltage, has been performed using maltose (G2), cellobiose ( G2'), maltriose (G3) and panose (G3') as oligosaccharide isomer models. In mu-CE, much better separation of oligosaccharide isomers and oligosaccharide ladder was obtained in phosphate buffer than in borate buffer over a wide pH range. Under optimal conditions, high-performance separation of the N-linked complex oligosaccharides released from ribonuclease B, fetuin, alpha1-acid glycoprotein (AGP) and IgG was achieved using polymethylmethacrylate (PMMA) microchips with an effective separation channel of 30 mm. These results represent the first reported analysis of the N-linked oligosaccharides derived from glycoproteins by mu-CE, indicating that the present mu-CE-based method is a promising alternative for characterization of the N-linked oligosaccharides in glycoproteins.  相似文献   

15.
Liang A  Chao Y  Liu X  Du Y  Wang K  Qian S  Lin B 《Electrophoresis》2005,26(18):3460-3467
A capillary electrophoresis (CE) method was developed for the separation of heparin oligosaccharides compatible to study the interactions between the oligosaccharides and granulocyte-colony stimulating factor (G-CSF). Unfractionated heparin was eliminitively degraded to heparin oligosaccharides by an endolytic heparinase. The degraded smaller oligosaccharides (M(r) < 1000) were baseline-separated by CE under a 50 mM phosphate buffer (pH 9.0) in 10 min. Standard heparin disaccharides and larger oligosaccharides (1000 < M(r) < 8000) were all separated under optimized separation conditions. Compared with standard heparin disaccharides, smaller oligosaccharides contained one nonsulfated, two monosulfated, and two disulfated disaccharides, but trisulfated disaccharides were not found. The smaller oligosaccharides were also identified and molecular mass was deduced by electrospray ionization-mass spectrometry (ESI-MS). Furthermore, interactions between G-CSF and the oligosaccharides were studied by using capillary zone electrophoresis (CZE) under the above separation conditions. It was found that larger oligosaccharides could interact with G-CSF while smaller oligosaccharides were not observed to bind to G-CSF under the experimental conditions. In conclusion, the purified heparinase could selectively degrade heparin into oligosaccharides and the interaction between G-CSF and heparin was correlated with the chain length of heparin.  相似文献   

16.
A capillary electrophoresis (CE) method was developed for the simultaneous analysis of small chitin and chitosan oligosaccharides. For detection purposes, the oligomers were derivatized with 8-aminopyrene-1,3,6-trisulfonic acid (APTS), a well known fluorophore for oligosaccharides analysis. The detection was performed by laser-induced fluorescence (LIF) with an argon ion laser having an excitation wavelength of 488 nm and with emission monitored at 520 nm. Derivatization parameters such as reaction time and conditions were examined. Separation conditions were also varied by testing a range of buffer pHs and concentrations. The best conditions were found using an 80 mM borate buffer at pH 8.4. This CE-LIF optimized method was used for the analysis of an enzymatically produced oligo-chitosan sample composed of a complex mixture and having an average degree of polymerization of 3.7 monomer units and 80% deacetylation. The oligo-chitosan sample was treated with a chitin deacetylase-like enzyme, the products were derivatized with APTS, and then analyzed without purification. The goal was to determine whether the deacetylase-like enzyme could increase the extent of deacetylation of the oligo-chitosan sample.  相似文献   

17.
We describe a highly sensitive CE with laser-induced fluorescence (LIF) detection for the analysis of N-linked oligosaccharides in glycoproteins using rhodamine 110 as a fluorescence derivatization reagent. One CE separation is performed using a fused-silica capillary and neutral pH buffer conditions and allows for the separation of sialo-oligosaccharides according to the number of sialic acids. An alternate separation is performed using the same capillary and acidic pH buffer conditions, enabling the separation of asialo-oligosaccharides according to their sizes. The derivatization and separation conditions for the analysis of sialo- and asialo-oligosaccharides were optimized. Furthermore, we applied the proposed method for the analyses of N-linked sialo- and asialo-oligosaccharides in glycoproteins (ribonuclease B, fetuin, and recombinant human erythropoietin).  相似文献   

18.
A simple, sensitive and reproducible multi-dimensional capillary electrophoresis (CE) oligosaccharide mapping method is reported. The structures of 20 identified N-linked oligosaccharides have been assigned mapping positions from which co-migrating unknown oligosaccharides can be characterized. The separation protocols developed have been demonstrated to separate both charged and neutral oligosaccharides. One dimension involves electroendosmotic flow-assisted CE in a sodium acetate buffer, pH 4.0. A second dimension involves separation based on borate complexation electrophoresis in a polyethylene glycol-containing buffer. A third dimension developed specifically for neutral oligosaccharides, using a sodium phosphate buffer, pH 2.5, has been shown to resolve neutral species not able to be separated by the other two dimensions. Thus, a three-dimensional map was generated to facilitate structural characterization of these oligosaccharides.  相似文献   

19.
为建立一种快速分离白花丹参水溶性有效成分的毛细管区带电泳体系,分别考察了缓冲液浓度、缓冲液pH、运行电压、检测波长对样品的分离度、迁移时间等因素的影响。最终优化的分离条件为:5 mmol/L硼砂缓冲液(pH 7.5);毛细管柱75 μm×60.2 cm,有效长度50 cm,压力进样(3.45 kPa×4 s),27.5 kV恒压分离,210 nm波长下检测,柱温25 ℃。在优化的条件下,8 min内使白花丹参样品中的原儿茶醛、丹参素、原儿茶酸组分达到完全基线分离。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号