首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
张岩  马晓斐  吕品  丛斌 《分析化学》2014,(12):1833-1837
使用双梯度液相色谱系统紫外检测器,建立了二维液相色谱法全自动快速同时测定牙膏中三七皂苷R1、人参皂苷Rg1、Re和Rb1的含量。样品经超声提取后,以Syncronis C18为一维分析柱,ODS C18为二维分析柱,利用一维色谱柱完成三七皂苷R1和人参皂苷Rb1分离测定以及人参皂苷Rg1和人参皂苷Re的净化;利用二维色谱柱完成人参皂苷Rg1和人参皂苷Re的分析。一维分析和二维分析均以乙腈-水体系作为流动相,梯度洗脱,检测波长为203 nm,整个分析过程仅需30 min。三七皂苷 R1、人参皂苷 Rg1、Re 和 Rb1在0.5~200 mg/L范围内线性良好,相关系数R2分别为0.9994,0.9996,0.9995和0.9994,平均回收率均在86.4%~95.1%之间。本方法简便快速,测定结果准确可靠,可用于牙膏中三七皂苷R1、人参皂苷Rg1、Re和Rb1含量的测定。  相似文献   

2.
利用高效液相色谱-飞行时间质谱联用的方法,分别对人参配伍山楂前后人参皂苷的变化进行分析,同时对人参皂苷Re、Rg1、Rb1、Rd与山楂配伍的水解规律进行系统研究,并与单独煎煮液、仿山楂配伍pH值煎煮液的水解产物进行比较,结果发现人参与山楂配伍后人参皂苷Rg1、Rb1含量明显减少,而人参皂苷Re、Rd、Rg2、Rg3、F2、Rh1含量明显增加,其中人参皂苷Re与山楂配伍后水解产物为人参皂苷20(R)-Rg2、20(S)-Rg2,仿山楂配伍pH值水解产物为人参皂苷20(R)-Rg2、20(S)-Rg2、Rg4、Rg6;人参皂苷Rg1与山楂配伍后水解产物为20(S)-Rh1、20(R)-Rh1,仿山楂pH值水解产物为20(S)-Rh1、20(R)-Rh1、Rh4、Rk3;人参皂苷Rb1与山楂配伍后水解产物为Rd、20(S)-Rg3,仿山楂pH值水解产物为F2、20(S)-Rg3;人参皂苷Rd与山楂配伍后水解产物为F2、20(S)-Rg3、20(R)-Rg3,仿山楂pH值水解产物为20(S)-Rg3、20(R)-Rg3。研究表明,不同人参皂苷和山楂配伍后与仿山楂pH值的水解产物并不相同,人参与山楂配伍改变了人参皂苷成分的种类及含量。本研究为临床方剂中人参与山楂配伍后成分的变化提供物质基础数据。  相似文献   

3.
采用超高效液相色谱法测定参麦注射液中间产品中的人参皂苷Rg1、Re和Rb1。参麦注射液中间产品经0.2μm滤膜过滤,以ACQUITY UPLC shield BEH RP18色谱柱为分离柱,以乙腈-水为流动相进行梯度洗脱,紫外检测波长为203nm。人参皂苷Rg1、Re和Rb1的质量浓度在0.081 8~0.409 2g·L-1范围内与峰面积呈线性关系,检出限(3S/N)分别为0.652,0.479,0.916mg·L-1。加标回收率在99.9%~100%之间,测定值的相对标准偏差(n=9)在0.47%~0.64%之间。  相似文献   

4.
采用反相迁移毛细管胶束电动色谱方法分离测定了复方丹参片中人参皂苷Rd、Rb1、Rg1、Re和三七皂苷R1等5种皂苷的含量。考察了SDS、有机改性剂和磷酸浓度、样品溶剂及进样时间对样品分离和检测灵敏度的影响。最佳缓冲溶液组成为:10mmol/L磷酸-140mmol/LSDS-14%(V/V)乙腈-15%(V/V)异丙醇(pH=2.4),样品溶剂为20%甲醇-10mmol/LSDS,压力进样时间为12s。在最佳条件下,5种组分在27min内达到高效分离(柱效为1.1~1.6×106N/m),在一个数量级浓度范围内线性相关系数为0.9975~0.9993,日内和日间精密度分别小于4.8%和5.5%,回收率为96.5%~103.6%。该方法用于复方丹参片中皂苷类成分含量的测定,简单、快速、灵敏、准确。  相似文献   

5.
采用密闭微波技术对7种常见人参皂苷单体(Rb1,Rb2,Rb3,Rc,Rd,Re和Rg1)进行降解,通过高效液相色谱(HPLC)分析并与相同条件下非微波降解物对比,研究了密闭微波降解人参皂苷的产物在化学结构及组成上的变化规律,以期快速、高效地制备生物活性高的稀有人参皂苷.结果表明,密闭式微波降解法能够使常见人参皂苷基本降解完全,而相同条件下非微波降解法则基本不发生降解.原人参二醇型人参皂苷易水解掉C20位糖,并发生C20位构型变化,生成20(R)-Rg3和20(S)-Rg3,其中20-(R)为优势构型,C20位羟基进一步脱水产生稀有人参皂苷Rk1和Rg5.同时,20(S/R)-Rg3失去C3位的1分子葡萄糖转化为20(S/R)-Rh2,C20位羟基再进一步脱水生成了Rk2和Rh3.此外,人参皂苷C20位所连的糖种类与构型影响了降解产物中各稀有皂苷的组成与比例,但7种原人参二醇型人参皂苷密闭式微波降解产物中Rg5含量均为最高.密闭式微波降解对原三醇型人参皂苷的转化作用与原二醇型人参皂苷具有相似的规律,人参皂苷Re和Rg1的密闭式微波降解产物中Rh4含量均为最高.本文结果进一步说明在相同的降解条件下,密闭式微波降解法的降解效率远高于高温高压非微波降解法,密闭式微波降解可明显促进常见人参皂苷向稀有人参皂苷转化,因此采用密闭微波技术对常见人参皂苷进行降解可以大量获得稀有人参皂苷.  相似文献   

6.
建立了胶束毛细管电泳法同时测定中药复方制剂消栓通络片中芦丁、丹参素、人参皂苷Rg1、人参皂苷Rb1、三七皂苷R1含量的分析方法。研究了缓冲体系的浓度、添加剂种类、分离电压、进样时间对组分分离的影响,以60 mmol/L SDS-30 mmol/L Tris-10 mmol/L硼酸(含15%甲醇)作运行缓冲液,检测波长214 nm,5种组分在26 min内得到基线分离。芦丁、丹参素、人参皂苷Rb1、人参皂苷Rg1、三七皂苷R1的质量浓度分别在2.5~100、2.5~200、10~300、15~400、15~400 mg/L范围内与其峰面积呈良好的线性关系,检出限分别为0.3、0.9、3.0、5.0、6.0 mg/L。样品在低、中、高3个浓度下的加标回收率为93%~108%,相对标准偏差均不大于4.5%。该方法简便、快速,可用于实际样品检测。  相似文献   

7.
利用快速分离液相色谱-四极杆飞行时间质谱联用仪(RRLC/Q-TOF-MS)研究了人参多糖对肠道菌群转化人参皂苷Re的影响;考察了人参皂苷Re的代谢产物Rg1在口服人参多糖大鼠体内的药代动力学,并与正常大鼠体内Rg1的药代动力学参数进行了比较.结果表明,体外肠道菌群转化人参皂苷Re的主要转化产物有人参皂苷Rg1,Rh1,Rg2,F1和原人参三醇(Protopanaxatriol,PPT),分别归属于3条转化路径;正常情况下,肠道菌群转化人参皂苷Re 48 h时,除了终产物PPT的存在,中间产物Rg1,Rg2和F1仍可被检测到,而加入人参多糖后,只检测到终产物PPT.当口服给药Re后,代谢产物Rg1的达峰时间(tmax)、最大血浆浓度(cmax)和血浆药物浓度-时间曲线下面积(AUC)分别为(11.6±6.1) h,(80.1±44.0) ng/m L和(549.3±209.4) ng·h/m L;当给予人参多糖14 d后,口服给药Re,代谢产物Rg1的tmax,cmax和AUC分别为(8.2±5.4) h,(98.2±50.6) ng/m L和(691.9±231.2) ng·h/m L.研究结果表明,人参多糖能促进人参皂苷Re转化为人参皂苷Rg1,进而提高胃肠道对人参皂苷Rg1的吸收,并可能增强人参的药理作用.  相似文献   

8.
采用泡沫浮选法对三七提取液中的人参皂苷Rg1、Re、Rb1和Rd进行了分离富集,并用高效液相色谱法分别测定了含量.考察了浮选液浓度、浮选时间、浮选液pH值、氮气流速和电解质NaCl浓度对浮选效率的影响.结果表明:泡沫浮选法对4种皂苷均有较好的分离富集效果,尤其是对人参二醇型皂苷(Rb1,Rd)效果更为明显.当浮选液浓度为2.0 mg/mL,pH值为2~3,氮气流速为20 mL/min,浮选时间10 min,电解质氯化钠浓度0.20 mol/L,泡沫浮选效果最佳.  相似文献   

9.
构建微流蒸发光散射检测器(μELSD)与加压毛细管电色谱(pCEC)联用系统,测定中药提取物注射用血塞通(冻干)中三七皂苷R1、人参皂苷Rg1,Re,Rb1、Rd考察系统的实用性和稳定性。用C18毛细管色谱柱,通过对流动相体系、梯度洗脱条件、雾化载气流速、蒸发温度、施加电压等参数的优化,确定了注射用血塞通(冻干)5种成分含量测定的最佳测定参数。最佳测定参数如下,流动相A为15 mmol/L甲酸-三乙胺乙腈溶液(pH=7.0),流动相B为15 mmol/L甲酸-三乙胺溶液(pH=7.0);梯度洗脱条件:0~10 min,19%A;10~30 min,22%A;30~35 min,36%A;35~45 min,40%A。雾化载气流速2 L/min;蒸发温度120℃;施加电压+8 kV。5种成分线性范围为8.6~146.9 ng(三七皂苷R1)、6.9~189.7 ng(人参皂苷Rg1)、6.8~171.4 ng(人参皂苷Re)、9.4~156.1 ng(人参皂苷Rb1)、7.5~180.5 ng(人参皂苷Rd),5种成分回收率都在95%~105%之间。实验表明,构建的pCEC-μELSD联用系统能用于药物中有效成分的含量测定。μELSD的构建为毛细管液相色谱、毛细管电色谱和毛细管电泳分离技术提供了一种全新的检测手段。  相似文献   

10.
采用整体柱建立了流速/溶剂双梯度反相高效液相色谱法快速同时测定复方丹参片中三七皂苷R1,人参皂苷Rg1,Re,Rb1,Rd,Rb2及丹参酮ⅡA 7种有效成分。通过对溶剂和流速双梯度体系的逐步优化,并应用色谱模拟软件Dry Lab,得到分离7种成分的最佳色谱条件。采用色谱柱Merck Chromolith Performance RP-18e(100 mm×4.6 mm),以乙腈-水为流动相体系,流速/溶剂双梯度洗脱,柱温30℃;片剂中的7种成分在21 min内达到基线分离;Rg1在60.60~242.40 mg/L(r=0.999 0)、丹参酮ⅡA在16.52~66.08 mg/L(r=0.999 9),其余皂苷在30.70~142.66 mg/L(r≥0.999 4)范围内具有良好的线性关系;定量下限(S/N=10)为21~124μg/kg,回收率为96.7%~100.1%。该方法能在短时间内同时分离不同极性的化合物,提高被测物的柱效,减少半峰宽和拖尾,可应用于复方丹参片中7种成分的含量分析。  相似文献   

11.
A high performance liquid chromatography coupled with electrospray ionization-tandem mass spectrometry( HPLC-ESI-MS/MS) method was developed for the analysis and identification of ginsenosides in the extracts of raw Panax ginseng(RPG) and steamed Panax ginseng at high temperatures(SPGHT). A total of 25 ginsenosides were extracted include of which 10 low-polar ginsenosides, such as ginsenosides F4, Rk3, Rh4, 20S-Rg3, 20R-Rg3 and so on, were identified according to their HPLC retention time and MS/MS data. The results indicated that the low polar ginsenosides were seldom found in RPG. For the exploration of the transformation pattern of the ginsenosides in steam processing, the standards of ginsenosides Re, Rg1, Rb1, Rc, Rb2, Rb3 and Rd were selected and hydrolyzed at a temperature of 120 ℃. The results show that these polar ginsenosides can be converted to low-polar ginsenosides such as Rg2, Rg6, F4, Rk3 and Rg5 by hydrolyzing the sugar chains.  相似文献   

12.
This study compared eight major ginsenosides (Rg1, Rg2, Rf, Re, Rd, Rc, Rb1 and Rb2) between Panax sokpayensis and Panax bipinnatifidus collected from Sikkim Himalaya, India. High-performance liquid chromatographic analysis revealed that all major ginsenosides were present in the rhizomes of P. sokpayensis except ginsenoside Rc, whereas ginsenoside Rf, Rc and Rb2 were not detected in P. bipinnatifidus.  相似文献   

13.
陈树东  冯锐  林晓佳  梁土金  何秋婷 《色谱》2021,39(5):526-533
建立了以固相萃取结合超高效液相色谱-串联质谱(UPLC-MS/MS)同时检测保健食品中9种原人参二醇型和原人参三醇型人参皂苷的方法.保健食品中人参皂苷经过提取后,通过Alumina-N/XAD-2 SPE柱净化,在Hypersil Gold C18色谱柱(100 mm×2.1 mm,1.9μm)上分离,利用乙酸铵溶液(...  相似文献   

14.
Two Rapid Resolution Liquid Chromatography (RRLC) methods have been developed and validated for simultaneous quantification of eight major ginsenosides from Panax species, namely, R1, Rg1, Re, Rf, Rb1, Rb2, Rc, and Rd, and flavonoids from Epimedium species, namely, epimedins A, B, and C and icariin. The analyses were performed using an Agilent 1200 series RRLC system with Phenomenex Luna C18-HST and Zorbax Eclipse XDB columns. The separation was performed with a gradient mobile phase of A (pure water) and B (acetonitrile) at a flow rate of 1.0 mL/min and 2.5 mL/min, respectively. Both columns were kept at 40 degrees C with the detection wavelength set at 203 nm. Specific eluted compounds were identified by using reference samples of ginsenosides R1, Rg1, Re, Rf, Rb1, Rc, Rb2, and Rd, and epimedins A, B, C and icariin. Baseline separation was achieved in less than 15 minutes for the Phenomenex Luna column and 4 minutes for the Zorbax Eclipse column. Characteristic RRLC profiles were established for complex mixtures of ginsenosides from Panax species and flavonoids from Epimedium species. Both methods developed here are effective for the quality control of formulated products containing both Panax and Epimedium varieties.  相似文献   

15.
Twelve collaborating laboratories assayed 4 products, namely, Panax ginseng, Panax quinquefolius, and 2 ginseng products, for 6 ginsenosides: Rb1, Rb2, Rc, Rd, Re, and Rg1. Collaborators also received a negative control for the recovery study. Pure ginsenosides were provided as reference standards for the liquid chromatography (LC) analysis and the system suitability tests. The LC analyses were performed on the methanol extract using UV detection at 203 nm. For P. ginseng, individual ginsenosides were consistent in their means; repeatability standard deviations (RSDr) ranged from 4.17 to 5.09% and reproducibility standard deviations (RSDR) ranged from 7.27 to 11.3%. For P. quinquefolius, the Rb1 and Rb2 ginsenosides were higher and lower in concentration than P. ginseng, with RSDr values of 3.44 and 6.60% and RSDR values of 5.91 and 12.6% respectively, and other analytes at intermediate precisions. For ginseng commercial products, RSDr values ranged from 3.39 to 8.12%, and RSDR values ranged from 7.65 to 16.5%. A recovery study was also conducted for 3 ginsenosides: Rg1, Re, and Rb1. The average recoveries were 99.9, 96.2, and 92.3%, respectively. The method is not applicable for the determination of Rg1 and Re in ginseng product at levels <300 mg/kg.  相似文献   

16.
Ginsenosides exhibit diverse biological activities and are major well-known components isolated from the radix of Panax ginseng C.A. Meyer. In the present work, a rapid and facile method for the separation and purification of eight ginsenosides from P. ginseng by high-speed counter-current chromatography coupled with evaporative light scattering detector (HSCCC-ELSD) was successfully developed. The crude samples for HSCCC separation were first purified from ginseng extract using a macroporous resin; the extract was loaded onto a Diaion-HP20 column and fractionated by methanol and water gradient elution. The ginsenosides-protopanaxadiol (PPD) and protopanaxatriol (PPT) fractions were subsequently eluted with 65 and 80% methanol and water gradient elution, respectively. Furthermore, these two fractions were separated by HSCCC-ELSD. The two-phase solvent system used for separation was composed of chloroform/methanol/water/isopropanol at a volume ratio of 4:3:2:1. Each fraction obtained was collected and dried, yielding the following eight ginsenosides: Rg(1), Re, Rf, Rh(1), Rb(1), Rc Rb(2) and Rd. The purity of these ginsenosides was greater than 97% as assessed by HPLC-ELSD, and their structures were characterized by electrospray-ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance spectroscopy. This is the first report regarding the separation of the ginsenosides Rh(1), Rb(2) and Rc from P. ginseng by HSCCC.  相似文献   

17.
A single-laboratory validation study was conducted for the quantification of Rg1, Re, Rb1, Rc, Rb2, and Rd in Asian ginseng (Panax ginseng C.A. Meyer) and North American ginseng (Panax quinquefolius L.) raw materials and finished products by RP-HPLC. The extraction with aqueous methanol was optimized for whole root, powdered extract, and finished product (raw, tablet, and capsule matrixes) test articles. Root materials were treated with base to hydrolyze acidic malonyl ginsenosides to their neutral counterparts. Calibration curves for each ginsenoside were linear over the following ranges (microg/g): 5-394 for Rg1, 15-1188 for Re, 39-2981 for Rb1, 6-499 for Rc, 5-406 for Rb2, and 7-600 for Rd, all having a coefficient of determination (r2) of > or = 99.5%. The LOD for Rg1, Re, Rb1, Rc, Rb2, and Rd was determined to be 1.06, 1.25, 2.19, 1.24, 1.27, and 1.70 microg/mL, respectively. Quantitative determinations performed with eight test materials by two analysts over 3 days (n = 12) resulted in RSDr values that ranged from 1.11 to 7.61%.  相似文献   

18.
Ginsenosides Rg1,Re,Rb1,Rc,Rb2,Rb3,and Rd in different parts of the American ginseng plant were investigated.The extraction process was a pressurized microwave-assisted extraction(PMAE).The seven ginsenosides were separated and determined by high-performance liquid chromatography(HPLC) with a ultraviolet(UV) detector,at 203 nm.The experiment results showed significant variations in the individual ginsenoside contents of the American ginseng in different parts and ages of the plant.The results demonstrated that the leaves,root hairs,and rhizomes of Panax quinquefolius L.contained higher ginsenoside contents,followed by the main roots and stems.The leaves contained dramatically higher levels of ginsenoside Rg1,Rb3,and Rd than the other four parts.Higher contents of Rb1 and Re were present in the main roots,root hairs,and rhizomes.The amount of ginsenoside content in the stems was the lowest.The total content of the seven ginsenosides in main roots,root hairs and rhizomes increased with the age of the plant.In contrast,the ginsenoside contents in the leaves and stems decreased with a year of growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号