首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms which are responsible for the radiationless deactivation of the npi* and pipi* excited singlet states of thymine have been investigated with multireference ab initio methods (the complete-active-space self-consistent-field (CASSCF) method and second-order perturbation theory with respect to the CASSCF reference (CASPT2)) as well as with the CC2 (approximated singles and doubles coupled-cluster) method. The vertical excitation energies, the equilibrium geometries of the 1npi*and 1pipi* states, as well as their adiabatic excitation energies have been determined. Three conical intersections of the S1 and S0 energy surfaces have been located. The energy profiles of the excited states and the ground state have been calculated with the CASSCF method along straight-line reaction paths leading from the ground-state equilibrium geometry to the conical intersections. All three conical intersections are characterized by strongly out-of-plane distorted geometries. The lowest-energy conical intersection (CI1) arises from a crossing of the lowest 1pipi* state with the electronic ground state. It is found to be accessible in a barrierless manner from the minimum of the 1pipi* state, providing a direct and fast pathway for the quenching of the population of the lowest optically allowed excited states of thymine. This result explains the complete diffuseness of the absorption spectrum of thymine in supersonic jets. The lowest vibronic levels of the optically nearly dark 1npi* state are predicted to lie below CI1, explaining the experimental observation of a long-lived population of dark excited states in gas-phase thymine.  相似文献   

2.
The photochemical [1,2]-shifts leading to carbene intermediates from cyclohexene and norbornene have been studied using CASSCF calculations and a 6-31G* basis set. In each case, a S(1)/S(0) conical intersection hyperline was identified that extends from the region of the reactant excited state to the carbene product. It is traditionally thought that the Rydberg R(pi,3s) state is responsible for carbene formation on photolysis of cyclic alkenes, but these new results indicate an efficient mechanism for carbene formation following excitation to the (1)(pipi*) state. This pathway is essentially barrierless and involves internal conversion to the ground-state surface via conical intersections between the excited zwitterionic valence state and the ground-state surface, similar to those responsible for cis-trans isomerization in ethene and other acyclic alkenes. These results are in excellent agreement with recent experimental data obtained using femtosecond spectroscopy.  相似文献   

3.
Multiconfigurational CASSCF and CASPT2 calculations were performed to investigate the enol --> keto tautomerization in the lowest singlet excited state of the 7-hydroxyquinoline.(NH3)3 cluster. Two different reaction mechanisms were explored. The first one corresponds to that proposed previously by Tanner et al. (Science 2003, 302, 1736) on the basis of experimental observations and CASSCF optimizations under Cs-symmetry constraints. This mechanism comprises four consecutive steps and involves nonadiabatic transitions between the valence 1pipi* state and a pisigma* Rydberg-type state, resulting in hydrogen-atom transfer. Single-point CASPT2 calculations corroborate that for Cs-symmetry pathways hydrogen-atom transfer is clearly preferred over proton transfer. The second mechanism, predicted by CASSCF optimizations without constraints, implies proton transfer along a pathway on the 1pipi* surface in which one or more ammonia molecules depart significantly from the molecular plane defined by the hydroxyquinoline ring. The results suggest that both mechanisms may be competitive with proton transfer being somewhat favorable over hydrogen-atom transfer.  相似文献   

4.
Complete active space self-consistent field (CASSCF), multireference configuration interaction (MRCI), density functional theory (DFT), time dependent DFT (TDDFT) and the singles and doubles coupled-cluster (CC2) methodologies have been used to study the ground state and excited states of protonated and neutral Schiff bases (PSB and SB) as models for the retinal chromophore. Systems with two to four conjugated double bonds are investigated. Geometry relaxation effects are studied in the excited pipi* state using the aforementioned methods. Taking the MRCI results as reference we find that CASSCF results are quite reliable even though overshooting of geometry changes is observed. TDDFT does not reproduce bond alternation well in the pipi* state. CC2 takes an intermediate position. Environmental effects due to solvent or protein surroundings have been studied in the excited states of the PSBs and SBs using a water molecule and solvated formate as model cases. Particular emphasis is given to the proton transfer process from the PSB to its solvent partner in the excited state. It is found that its feasibility is significantly enhanced in the excited state as compared to the ground state, which means that a proton transfer could be initiated already at an early step in the photodynamics of PSBs.  相似文献   

5.
6.
The conical intersections of the dissociative 1pisigma* excited state with the lowest 1pipi* excited state and the electronic ground state of 9H-adenine have been investigated with multireference electronic structure calculations. Adiabatic and quasidiabatic potential energy surfaces and coupling elements were calculated as a function of the NH stretch coordinate of the azine group and the out-of-plane angle of the hydrogen atom, employing MultiReference Configuration-Interaction (MRCI) as well as Complete-Active-Space Self-Consistent-Field (CASSCF) methods. Characteristic properties of the 1pipi*-1pisigma* and 1pisigma*-S0 conical intersections, such as the diabatic-to-adiabatic mixing angle, the geometric phase of the adiabatic electronic wavefunctions, the derivative coupling, as well as adiabatic and diabatic transition dipole moment surfaces were investigated in detail. These data are a prerequisite for future quantum wavepacket simulations of the photodissociation and internal-conversion dynamics of adenine.  相似文献   

7.
《Chemical physics letters》2001,331(1-2):155-164
The low-lying singlet excited states of CH2BrCl have been calculated using multiconfigurational CASSCF, second-order perturbation theory CASPT2 and its multistate extension MS-CASPT2. The CASSCF method shows spurious valence–Rydberg mixing and a wrong order of states. Inclusion of dynamical correlation by single root CASPT2 lowers dramatically the energy of the valences states but does not lead to a complete separation between valence and Rydberg states. This situation is improved by the MS-CASPT2 calculations, which gives two valence states for both A and A″ symmetries below the lowest Rydberg state, corresponding to n(Br)→σ*(C–Br) and n(Cl)→σ*(C–Cl) transitions at 6.1 eV (203 nm) and 7.2 eV (173 nm), and being repulsive along C–Br and C–Cl coordinates.  相似文献   

8.
The population of the lowest triplet state of thymine after near-UV irradiation has been established, on the basis of CASPT2//CASSCF quantum chemical calculations, to take place via three distinct intersystem crossing mechanisms from the initially populated singlet bright 1pipi* state. Two singlet-triplet crossings have been found along the minimum-energy path for ultrafast decay of the singlet state at 4.8 and 4.0 eV, involving the lowest 3npi* and 3pipi* states, respectively. Large spin-orbit coupling elements predict efficient intersystem crossing processes in both cases. Another mechanism involving energy transfer from the lowest 1npi* state with much larger spin-orbit coupling terms can also be proposed. The wavelength dependence measured for the triplet quantum yield of pyrimidine nucleobases is explained by the location and accessibility of the singlet-triplet crossing regions.  相似文献   

9.
Non-adiabatic molecular dynamics simulations have been performed in the fluoro-olefin (4-methylcyclohexylidene) fluoromethane (4MCF) using multiconfigurational CASSCF (complete active space self-consistent field) on-the-fly calculations. As an olefin containing a C[double bond, length as m-dash]C double bond, 4MCF is expected to undergo cis-trans isomerization after light irradiation. However, ab initio molecular dynamics shows that a preferential dissociation of atomic hydrogen is taking place after population transfer to the bright ππ* state. This state is strongly mixed with πσ* states allowing dissociation in the electronic excited state before deactivation to the ground state occurs. A minor amount of trajectories experiences F-dissociation, followed by pyramidalization at the sp(2) carbons and CHF dissociation. In contrast, the amount of trajectories undergoing torsion around the double bond, and therefore cis-trans isomerization, is marginal. The H-abstraction reaction is ultrafast, taking place in less than 60 fs.  相似文献   

10.
Using the complete active space self-consistent field (CASSCF) method with large atomic natural orbital (ANO-L) basis set, four electronic states of the HSO neutral radical are optimized. The vertical transitions of the HSO neutral radical are investigated by using the same method under the basis set of ANO-L functions augmented with a series of adapted 1s1p1d Rydberg functions, through which eight valence states and eight Rydberg states are probed. Ionic states of the HSO neutral radical are extensively studied in both cases of the adiabatic and vertical ionization, from which the relatively complete understanding of ionization energies is given. To include further correlation effects, the second-order perturbation method (CASPT2) is implemented, and the comparison between CASSCF and CASPT2 methods is performed.  相似文献   

11.
Complete active-space self-consistent field (CASSCF) calculations with a (14,11) active space and density functional theory calculations followed by Car-Parrinello molecular dynamic simulations are reported for the p-hydroxyphenacyl acetate, diethyl phosphate, and diphenyl phosphate phototrigger compounds. These calculations considered the explicit hydrogen bonding of water molecules to the phototrigger compound and help reveal the role of water in promoting the photodeprotection and subsequent rearrangement reactions for the p-hydroxyphenacyl caged phototrigger compounds experimentally observed in the presence of appreciable amounts of water but not observed in neat nonproton solvents like acetonitrile. The 267 nm excitation of the phototrigger compounds leads to an instantaneous population of the S3(1pipi*) state Franck-Condon region, which is followed by an internal conversion deactivation route to the S1(1npi*) state via a 1pipi*/1npi* vibronic coupling. The shorter lifetime of the S1(1npi*) state (approximately 1 ps) starting from the FC geometry is terminated by a fast intersystem crossing at a 3pipi*/3npi* intersection with a structure of mixed pipi*/npi* excitation in the triplet state. The deprotection reaction is triggered by a proton (or hydrogen atom) transfer assisted by water bridges and emanates from this pipi*/npi* triplet state intersection. With the departure of the leaving group, the reaction evolves into a water-mediated post-deprotection phase where the spin inversion of pQM (X, 3A) leads to a spiroketone in the ground state by a cyclization process that is followed by an attack of water to produce a 1,1'-di-hydroxyl-spiroketone. Finally, the H atom of the hydroxyl in 1,1'-di-hydroxyl-spiroketon transfers back to the p-O atom aided by water molecules to generate the p-hydroxyphenyl-acetic acid final rearrangement product.  相似文献   

12.
C2F4 was excited by using a 150 fs pulse in its longest-wavelength band to the Rydberg (3 s) state and then probed by photoionization techniques at 810 nm. The molecule relaxes in two consecutive steps (time constants 29 and 118 fs), probably via the pipi* state, which is lowered in energy by stretching and twisting the C=C bond. A coherent oscillation (350 fs) was found, which we assign to an overtone of the twist vibration (47.6 cm(-1)) in this state. we also conclude that dissociation to singlet and some triplet CF2 only takes place in the hot ground state of C2F4, from where also the C2F4 triplet state is populated. The potentials and their conical intersections are discussed with respect to relaxation and dissociation, including also some new considerations of thermal processes.  相似文献   

13.
14.
Equation of motion excitation energy coupled-cluster (EOMEE-CC) methods including perturbative triple excitations have been used to set benchmark results for the excitation energy and oscillator strength of the building units of DNA, i.e., cytosine, guanine, adenine and thymine. In all cases the lowest twelve transitions have been considered including valence and Rydberg ones. Triple-ζ basis sets with diffuse functions have been used and the results are compared to CC2, CASPT2, TDDFT, and DFT/MRCI results from the literature. The results clearly show that it is only the EOMEE-CCSD(T) that is capable of providing accuracy of about 0.1 eV. EOMEE-CCSD systematically overshoots the energy of all types of transitions by 0.1-0.3 eV, whereas CC2 is surprisingly accurate for ππ* transitions but fails (often badly) for nπ* and Rydberg transitions. DFT and CASPT2 seem to give reliable results for the lowest transition, but the error increases fast with the excitation level. The differences in the excitation energies often change the energy ordering of the states, which should even influence the conclusions of excited state dynamics obtained with these approximate methods. The results call for further benchmark calculations on larger building blocks of DNA (nucleosides, basis pairs) at the CCSD(T) level.  相似文献   

15.
Valence and low-lying Rydberg states of acetylene (C2H2) are reexamined in the singlet as well as in the triplet manifold. The major goal of this work is a better understanding of the valence states that contribute to the low-energy electron-energy-loss spectrum recorded under conditions where transitions to triplet states are enhanced. An appropriate theoretical treatment of these states has to include the low-lying Rydberg states because of their energetic proximity to some of the valence states. The CASSCF/CASPT2 method provides a suitable framework for such a task. For some important states the geometry was optimized at the CASPT2 level to allow a comparison with the results of other highly accurate methods that have been applied to acetylene in the past. Received: 11 June 1998 /Accepted: 30 July 1998 / Published online: 19 October 1998  相似文献   

16.
The excited-state properties and related photophysical processes of the acidic and basic forms of pterin have been investigated by the density functional theory and ab initio methodologies. The solvent effects on the low-lying states have been estimated by the polarized continuum model and combined QM/MM calculations. Calculations reveal that the observed two strong absorptions arise from the strong pi --> pi* transitions to 1(pipi*L(a)) and 1(pipi*L(b)) in the acidic and basic forms of pterin. The first 1(pipi*L(a)) excited state is exclusively responsible for the experimental emission band. The vertical 1(n(N)pi*) state with a small oscillator strength, slightly higher in energy than the 1(pipi*L(a)) state, is less accessible by the direct electronic transition. The 1(n(N)pi*) state may be involved in the photophysical process of the excited pterin via the 1(pipi*L(a)/n(N)pi*) conical intersection. The radiationless decay of the excited PT to the ground state experiences a barrier of 13.8 kcal/mol for the acidic form to reach the (S(1)/S(0)) conical intersection. Such internal conversion can be enhanced with the increase in excitation energy, which will reduce the fluorescence intensity as observed experimentally.  相似文献   

17.
By exciting cyclohexene in the gas phase at 200 nm and probing it by nonresonant multiphoton ionization with mass-selective detection of the ion yields, we found four time constants tau(i) (20, 47, 43, 350 fs). Whereas deuteration lengthens tau2 by a factor of 1.4, the other constants do not change. Tau1-tau3 represent traveling times through observation windows on excited surfaces, whereas tau4 reflects a process in the hot ground state. We assign tau1 (20 fs) to departure from the Franck-Condon regions of the Rydberg and pipi* states, which are both populated at 200 nm, and tau2 (47 fs) to traveling along the pipi* surface and suggest that a [1,3]-sigmatropic H shift begins in this state. This rationalizes the deuterium effect on tau2. To explain why this window is followed by a process not subject to a D effect, we postulate that the pipi surface is crossed late (i.e., at low energy) by the zwitterionic state Z and that formation of a carbene (the known photochemical product, cyclopentylcarbene) begins there. The corresponding 1,2-shift of a CC bond is then (within tau4 = 350 fs) largely reversed on the ground-state surface, while a smaller part of the carbene forms products such as methylenecyclopentane within the same time. Carbene formation is probably accompanied by some cis-trans isomerization. The wavelength dependence of carbene formation is attributed to a memory for the initially excited state, based on momentum conservation. The processes are most likely typical of simple olefins. The fragmentation pattern showed that butadiene is not formed until at least 500 ps. The retro-Diels-Alder reaction, known to take place in the ground state, thus only occurs later.  相似文献   

18.
Summary The electronic spectrum of O 2 is reinvestigated using CASSCF and CI methods. In particular, a previously noted curious flattening of theA 2 u curve has been studied in detail. The present analysis disagrees with the previous one where this flattening was found to be a result of an avoided curve crossing between a valence and a Rydberg state of O 2 . A simple procedure is suggested to determine whether a wavefunction is of real Rydberg character or if the bound character of the state is just an artefact of the calculation.  相似文献   

19.
The complete active space with second-order perturbation theory/complete active space self-consistent-field method was used to explore the nonradiative decay mechanism for excited 9H-guanine. On the 1pipi* (1L(a)) surface we determined a conical intersection (CI), labeled (S0pipi*)(CI), between the 1pipi* (1L(a)) excited state and the ground state, and a minimum, labeled (pipi*)min. For the 1pipi* (1L(a)) state, its probable deactivation path is to undergo a spontaneous relaxation to (pipi*)min first and then decay to the ground state through (S0pipi*)(CI), during which a small activation energy is required. On the 1n(N)pi* surface a CI between the 1n(N)pi* and 1pipi* (1L(a)) states was located, which suggests that the 1n(N)pi* excited state could transform to the 1pipi* (1L(a)) excited state first and then follow the deactivation path of the 1pipi* (1L(a)) state. This CI was also possibly involved in the nonradiative decay path of the second lowest 1pipi* (1L(b)) state. On the 1n(O)pi* surface a minimum was determined. The deactivation of the 1n(O)pi* state to the ground state was estimated to be energetically unfavorable. On the 1pisigma* surface, the dissociation of the N-H bond of the six-membered ring is difficult to occur due to a significant barrier.  相似文献   

20.
Amplified spontaneous emission (ASE) from single rovibrational levels of valence (non-Rydberg) states of NO molecules has been investigated. The B2Pi (v=24 and 25), L2Pi (v=5 and 6), and I2Sigma+ (v=6) levels have been populated through laser optical-optical double resonance excitation via the Rydberg A2Sigma+ state. Term values for the 2Pi states have been determined with an accuracy of +/-0.03 cm(-1). Analyses of rotationally resolved dispersed ASE spectra in the near infrared region have shown that all the lower states belonged to the Rydberg states. The valence approximately Rydberg coupling in the upper manifolds has driven ASE systems from the valence to the Rydberg levels where they benefit from the strong intensities of inter-Rydberg transitions with Deltav=0. The experimentally predicted valence approximately Rydberg interactions have been compared with theoretical treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号