首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analysis is presented of the significance and consequent limitations on the applicability of the von Neumann measurement postulate in quantum mechanics. Directly observable quantities, such as the expectation value of the velocity operator, are distinguished from mathematical constructs, such as the expectation value of the canonical momentum, which are not directly observable. A simple criterion to distinguish between the two types of operators is derived. The non-observability of the electromagnetic four-potentials is shown to imply the non-measurability of the canonical momentum. The concept of a mechanical gauge is introduced and discussed. Classically the Lagrangian is nonunique within a total time derivative. This may be interpreted as the freedom of choosing a mechanical (M) gauge function. In quantum mechanics it is often implicitly assumed that the M-gauge vanishes. However, the requirement that directly observable quantities be independent of the arbitrary mechanical gauge is shown to lead to results analogous to those derived from the requirement of electromagnetic gauge independence of observables. The significance of the above to the observability of transition amplitudes between field-free energy eigenstates in the presence (and absence) of electromagnetic fields is discussed. E- and M-gauge independent transition amplitudes between field-free energy eigenstates in the absence of electromagnetic fields are defined. It is shown that, in general, such measurable amplitudes cannot be defined in the presence of externally applied time-dependent fields. Transition amplitudes in the presence of time-independent fields are discussed. The path dependence of previous derivations of E-gauge independent Hamiltonians and/or transition amplitudes in the presence of electromagnetic fields are related to the inherent M-gauge dependence of these quantities in the presence of such fields.  相似文献   

2.
Properties of six-component electromagnetic field solutions of a matrix form of the Maxwell equations, analogous to the four-component solutions of the Dirac equation, are described. It is shown that the six-component equation, including sources, is invariant under Lorentz transformations. Complete sets of eigenfunctions of the Hamiltonian for the electromagnetic fields, which may be interpreted as photon wave functions, are given both for plane waves and for angular-momentum eigenstates. Rotationally invariant projection operators are used to identify transverse or longitudinal electric and magnetic fields. For plane waves, the velocity transformed transverse wave functions are also transverse, and the velocity transformed longitudinal wave functions include both longitudinal and transverse components. A suitable sum over these eigenfunctions provides a Green function for the matrix Maxwell equation, which can be expressed in the same covariant form as the Green function for the Dirac equation. Radiation from a dipole source and from a Dirac atomic transition current are calculated to illustrate applications of the Maxwell Green function.  相似文献   

3.
Spin is an important quantum degree of freedom in relativistic quantum information theory. This paper provides a first-principles derivation of the observable corresponding to a Stern–Gerlach measurement with relativistic particle velocity. The specific mathematical form of the Stern–Gerlach operator is established using the transformation properties of the electromagnetic field. To confirm that this is indeed the correct operator we provide a detailed analysis of the Stern–Gerlach measurement process. We do this by applying a WKB approximation to the minimally coupled Dirac equation describing an interaction between a massive fermion and an electromagnetic field. Making use of the superposition principle we show that the +1 and −1 spin eigenstates of the proposed spin operator are split into separate packets due to the inhomogeneity of the Stern–Gerlach magnetic field. The operator we obtain is dependent on the momentum between particle and Stern–Gerlach apparatus, and is mathematically distinct from two other commonly used operators. The consequences for quantum tomography are considered.  相似文献   

4.
Dipole-dipole interactions between distant paramagnetic centers (PCs) where at least one PC has spinS>1/2 are examined. The results provide a basis for the application of pulsed electron-electron double resonance method to the measurement of distances between PCs involving high-spin species. A projection operator technique based on spectral decomposition of the secular Hamiltonian is used to calculate electron paramagnetic resonance (EPR) line splitting caused by the dipole coupling. This allows calculation of operators projecting an arbitrary wave function onto high-spin PC eigenstates when the eigenvectors of the Hamiltonian are not known. The effective spin vectors — that is, the expectation values for vector spin operators in the PC eigenstates — are calculated. The dependence of these effective spin vectors on the external magnetic field is calculated. There is a qualitative difference between pairs having at least one integer spin (non-Kramers PC) and pairs of two half-integer (Kramers PC) spins. With the help of these effective spin vectors, the dipolar line shape of EPR lines is calculated. Analytical relations are obtained for PCs with spinS=1/2 and 1. The dependence of Pake patterns on variations of zero-field splitting, Zeeman energy, temperature and dipolar coupling are illustrated.  相似文献   

5.
6.
Quantum mechanics of a particle in an infinite square well under the influence of a time-dependent electric field is reconsidered. In some gauge, the Hamiltonian depends linearly on the momentum operator, which is symmetric but not self-adjoint when defined on a finite interval. In spite of this symmetric part, the Hamiltonian operator is shown to be self-adjoint. This follows from a theorem by Kato and Rellich which guarantees the stability of a self-adjoint operator under certain symmetric perturbations. The result, which has been assumed tacitly by other authors, is important in order to establish the equivalence of different Hamiltonian operators related to each other by quantum gauge transformations.  相似文献   

7.
In the present work, we develop a method to derive the anomalous velocity of a spinning electron. From Dirac equation, the relationships among the expectation values of the Pryce’s mass-center operator, the position operator, the spin operator and the canonical momentum operator are investigated. By requiring that the center of mass for a classical spinning electron is related to the expectation value of Pryce’s mass-center operator, one can obtain a classical expression for the position of the electron. With the classical equations of motion, the anomalous velocity of a spinning electron can be easily obtained. It is shown that two factors contribute to the anomalous velocity: one is dependent on the selection of Pryce’s mass-center operators and the other is a type-independent velocity expressed by the rotational velocity and the Lorentz force.  相似文献   

8.
Free electron systems are ubiquitous in nature and have demonstrated intriguing effects in their collective interactions with weak electric and magnetic fields, especially in aqueous environments. Starting from the Dirac Hamiltonian, a fully relativistic expression is derived for the electron energy shift in the presence of a spatiotemporally constant, weak electromagnetic field. The expectation value of this energy shift is then computed explicitly using the Fourier transforms of the fermionic fields. To first order in the electromagnetic fields, the average relativistic energy shift is found to be completely independent of the electron spin-polarization coefficients. This effect is also considerably larger than that predicted in quantum mechanics by the analogous Zeeman shift. Finally, in the non-relativistic limit, it is shown how to discriminate between achiral and completely polarized states, which leads to a concluding discussion of possible mesoscopic and macroscopic manifestations of electron spin states across many orders of magnitude in the physical world, with stark implications for biological and other complex systems.  相似文献   

9.
A. Vernes 《哲学杂志》2015,95(10):1125-1138
The time evolution of the density corresponding to the polarization operator, originally constructed to commute with the Dirac Hamiltonian in the absence of an external electromagnetic field, is investigated in terms of the time-dependent Dirac equation taking the presence of an external electromagnetic field into account. It is found that this time evolution leads to ‘tensorial’ and ‘vectorial’ particle current densities and to the interaction of the spin density with the external electromagnetic field. As the time evolution of the spin density does not refer to a constant of motion (continuity condition) it only serves as auxiliary density. By taking the non-relativistic limit, it is shown that the polarization, spin and magnetization densities are independent of electric field effects and, in addition, no preferred directions can be defined.  相似文献   

10.
It was argued by Mashhoon that a spin-rotation coupling term should add to the Hamiltonian operator in a rotating frame, as compared with the one in an inertial frame. For a Dirac particle, the Hamiltonian and energy operators H and E in a given reference frame were recently proved to depend on the tetrad field. We argue that this non-uniqueness of H and E really is a physical problem. We show that a tetrad field contains two informations about local rotation, which usually do not coincide. We compute the energy operator in the inertial and the rotating frame, using three different tetrad fields. We find that Mashhoon’s term is there if the spatial triad rotates as does the reference frame—but then it is also there in the energy operator for the inertial frame. In fact, if one uses the same given tetrad field, the Dirac Hamiltonian operators in two reference frames in relative rotation differ only by the angular momentum term. If the Mashhoon effect is to exist for a Dirac particle, the tetrad field must be selected in a specific way for each reference frame.  相似文献   

11.
In the path integral representation, the Hamiltonian in a quantum system is associated with the Hamiltonian in a classical system through the Weyl transformation. From this, it is possible to describe the time evolution in a quantum system by the Hamiltonian in a classical system. In a Bose system, the Weyl transformation is defined by the eigenstates of the canonical operators, since the Hamiltonian is given by a function of the canonical operators. On the other hand, in a Fermi system, the Hamiltonian is usually described by a function of the creation and annihilation operators, and hence the Weyl transformation is defined by the coherent states which are the eigenstate of an annihilation operator. Here, we formulate the Weyl transformation in Fermi systems in terms of the eigenstates of the canonical operators so as to clarify the correspondence between both systems. Using this, we can derive the path integral representation in Fermi systems.  相似文献   

12.
The quantum lattice Boltzmann algorithm offers a unitary and readily parallelisable discretisation of the Dirac equation that is free of the fermion-doubling problem. The expectation of the discrete time-advance operator is an exact invariant of the algorithm. Its imaginary part determines the expectation of the Hamiltonian operator, the energy of the solution, with an accuracy that is consistent with the overall accuracy of the algorithm. In the one-dimensional case, this accuracy may be increased from first to second order using a variable transformation. The three-dimensional quantum lattice Boltzmann algorithm uses operator splitting to approximate evolution under the three-dimensional Dirac equation by a sequence of solutions of one-dimensional Dirac equations. The three-dimensional algorithm thus inherits the energy conservation property of the one-dimensional algorithm, although the implementation shown remains only first-order accurate due to the splitting error.  相似文献   

13.
We analyze the d = 5 operator mixing problem in the α gauge from the standpoint of illustrating various results in formal operator mixing theory. There is one physical gauge-invariant operator and also two unphysical “nuisance” operators. The anomalous dimension eigenvalue of the physical operator is shown to be explicitly gauge invariant; mixing to and between nuisance operators is α dependent and nuisance operators do not mix back to the physical sector. This is, perhaps the simplest system illustrating all of these features. We also discuss Higgs-boson induced d = 5 operators in the nonleptonic weak Hamiltonian.  相似文献   

14.
N. Giovannini 《Physica A》1977,87(3):546-568
In this paper a general group theoretical approach is given for the problem of a charged particle moving in an external electromagnetic field F. From a knowledge of the symmetry transformations of the field (Galilean or Poincaré), it is possible to explicitly construct groups of operators which commute with the operators of the equations of motion (classical, quantum mechanical, Klein-Gordon or Dirac) using the concept of compensating gauge transformations together with a uniquely chosen map π: FA fixing the gauge of the potential A. Other choices of gauges give rise to isomorphic operator groups. The general structure of the possible symmetry groups of the fields is discussed and the corresponding invariance operator groups are explicitly given for (almost) arbitrary fields. The structure of these groups is then investigated and it is shown in particular that a large class of fields give rise to non-Type I groups, i.e. to groups which have (unitary continuous) representations whose corresponding von Neumann algebras have non-discrete factors. A general criterion for these pathological cases is given. As an application, we study the problem of a Bloch electron in arbitrary constant uniform electric and magnetic fields.  相似文献   

15.
The spin force operator on a non-relativistic Dirac oscillator (in the non-relativistic limit the Dirac oscillator is a spin one-half 3D harmonic oscillator with strong spin–orbit interaction) is derived using the Heisenberg equations of motion and is seen to be formally similar to the force by the electromagnetic field on a moving charged particle. When confined to a sphere of radius R, it is shown that the Hamiltonian of this non-relativistic oscillator can be expressed as a mere kinetic energy operator with an anomalous part. As a result, the power by the spin force and torque operators in this case are seen to vanish. The spin force operator on the sphere is calculated explicitly and its torque is shown to be equal to the rate of change of the kinetic orbital angular momentum operator, again with an anomalous part. This, along with the conservation of the total angular momentum, suggests that the spin force exerts a spin-dependent torque on the kinetic orbital angular momentum operator in order to conserve total angular momentum. The presence of an anomalous spin part in the kinetic orbital angular momentum operator gives rise to an oscillatory behavior similar to the Zitterbewegung. It is suggested that the underlying physics that gives rise to the spin force and the Zitterbewegung is one and the same in NRDO and in systems that manifest spin Hall effect.  相似文献   

16.
We show numerically that a finite isolated cluster of interacting spins 1/2 exhibits a surprising nonthermal statistics when subjected to a series of small nonadiabatic perturbations by an external magnetic field. The resulting occupations of energy eigenstates are significantly higher than the thermal ones on both the low and the high ends of the energy spectra. This behavior semiquantitatively agrees with the statistics predicted for the so-called "quantum microcanonical" ensemble, which includes all possible quantum superpositions with a given energy expectation value. Our findings also indicate that the eigenstates of the perturbation operators are generically localized in the energy basis of the unperturbed Hamiltonian. This kind of localization possibly protects the thermal behavior in the macroscopic limit.  相似文献   

17.
The transmission coefficient of a nanodevice—a quantum ring with two one-dimensional conductors attached—is found. The Hamiltonian of a nanodevice is constructed in terms of the theory of self-adjoint extensions of symmetric operators. It is shown that, in this case, the transmission coefficient coincides with that determined by the Feynman sum rule for the probability amplitudes. The transmission coefficient of the nanodevice is studied as a function of the electron energy, magnetic field, and the relative positions of the conductor contacts and the ring.  相似文献   

18.
19.
The Lagrangian and Hamiltonian formulations for the relativistic classical dynamics of a charged particle with dipole moment in the presence of an electromagnetic field are given. The differential conservation laws for the energy-momentum and angular momentum tensors of a field and particle are discussed. The Poisson brackets for basic dynamic variables, which form a closed algebra, are found. These Poisson brackets enable us to perform the canonical quantization of the Hamiltonian equations that leads to the Dirac wave equation in the case of spin 1/2. It is also shown that the classical limit of the squared Dirac equation results in equations of motion for a charged particle with dipole moment obtained from the Lagrangian formulation. The inclusion of gravitational field and non-Abelian gauge fields into the proposed formalism is discussed.Received: 4 June 2005, Published online: 27 July 2005  相似文献   

20.
In the present work the role that a generalized uncertainty principle could play in the quantization of the electromagnetic field is analyzed. It will be shown that we may speak of a Fock space, a result that implies that the concept of photon is properly defined. Nevertheless, in this new context the creation and annihilation operators become a function of the new term that modifies the Heisenberg algebra, and hence the Hamiltonian is not anymore diagonal in the occupation number representation. Additionally, we show the changes that the energy expectation value suffers as result of the presence of an extra term in the uncertainty principle. The existence of a deformed dispersion relation is also proved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号