首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inspired by sophisticated biological structures and their physiological processes,supramolecular chemistry has been developed for understanding and mimicking the behaviors of natural species. Through spontaneous self-assembly of functional building blocks,we are able to control the structures and regulate the functions of resulting supramolecular assemblies.Up to now,numerous functional supramolecular assemblies have been constructed and successfully employed as molecular devices, machines and biological diagnostic platforms.This review will focus on molecular structures of functional molecular building blocks and their assembled superstructures for biological detection and delivery.  相似文献   

2.
We describe methodology for producing highly uniform, ordered and reproducible superstructures of surfactant-coated ZnS nanorod and nanowire assemblies, and propose a predictive multiscale "packing model" for superstructure formation based on electron microscopy and powder X-ray diffraction data on the superstructure, as well as on individual components of the nanostructured system. The studied nanoparticles showed a hierarchical structure starting from the individual faceted ZnS inorganic cores, onto which the crystalline surfactant molecules are adsorbed, to the superstructure of the nanoparticle arrays. Our results point out the critical role of the surfactant headgroup and polarity in nanoparticle assembly, and demonstrate the relationship between the molecular structure of the surfactant and the resulting superstructure of the nanoparticle assemblies.  相似文献   

3.
Programmable assembly of gold nanoparticle superstructures with precise spatial arrangement has drawn much attention for their unique characteristics in plasmonics and biomedicine. Bio-inspired methods have already provided programmable, molecular approaches to direct AuNP assemblies using biopolymers. The existing methods, however, predominantly use DNA as scaffolds to directly guide the AuNP interactions to produce intended superstructures. New paradigms for regulating AuNP assembly will greatly enrich the toolbox for DNA-directed AuNP manipulation and fabrication. Here, we developed a strategy of using a spatially programmable enzymatic nanorobot arm to modulate anisotropic DNA surface modifications and assembly of AuNPs. Through spatial controls of the proximity of the reactants, the locations of the modifications were precisely regulated. We demonstrated the control of the modifications on a single 15 nm AuNP, as well as on a rectangular DNA origami platform, to direct unique anisotropic AuNP assemblies. This method adds an alternative enzymatic manipulation to DNA-directed AuNP superstructure assembly.  相似文献   

4.
The morphology of conjugate polymers (such as poly(ethylenedioxythiophene), poly(pyrrole), and poly(aniline)) can be controlled in their polymerization processes, by applying the concept of the templating method to oxidative polymerization. As oxidative polymerization of these monomers produces cationic intermediates, the anionic assemblies can act as potential templates due to the mutual electrostatic attractive force. Oxidative polymerization of ethylenedioxythiophene (EDOT), pyrrole, and aniline was carried out using helical superstructures of synthetic lipid assemblies as templates. Interestingly, we have found that oxidative polymerization of these monomers results in novel polymeric aggregates, such as a helical-tape structure and an intertwined helical structure, and that both the right-handed and left-handed helical structures can be created by a change in the hydrophilic head groups. This is the first example of helical superstructures composed of conjugate polymers that have been designed utilizing a convenient templating method.  相似文献   

5.
Despite the availability of numerous two‐dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale‐ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of assemblies in different dimensions to achieve 2D conducting polymer nanosheets with structural ordering at the mesoscale. The supramolecular assemblies of amphipathic perfluorinated carboxylic acids and block co‐polymers serve as 2D interfaces and meso‐inducing moieties, respectively, which guide the polymerization of aniline into 2D, free‐standing mesoporous conducting polymer nanosheets. Grazing‐incidence small‐angle X‐ray scattering combined with various microscopy demonstrates that the resulting mesoscale‐ordered nanosheets have hexagonal lattice with d‐spacing of about 30 nm, customizable pore sizes of 7–18 nm and thicknesses of 13–45 nm, and high surface area. Such template‐directed assembly produces polyaniline nanosheets with enhanced π–π stacking interactions, thereby resulting in anisotropic and record‐high electrical conductivity of approximately 41 S cm?1 for the pristine polyaniline nanosheet based film and approximately 188 S cm?1 for the hydrochloric acid‐doped counterpart. Our moldable approach creates a new family of mesoscale‐ordered structures as well as opens avenues to the programmed assembly of multifunctional materials.  相似文献   

6.
Surface-confined self-assembly of functional molecular building blocks has recently been widely used to create low-dimensional, also covalent, superstructures with tailorable geometry and physicochemical properties. In this contribution, using the lattice Monte Carlo simulation method, we demonstrate how the structure-property relation can be established for the 2D self-assembly of a model tetrapod molecule with reduced symmetry. To that end, a rigid functional unit comprising a few interconnected segments arranged in different tetrapod shapes was used and its self-assembly on a triangular lattice representing a (111) crystal surface was simulated. The results of our calculations show strong dependence of the structure formation on the molecular symmetry, in particular on the (pro)chiral nature of the building block. The simulations predicted the formation of unusual ordered racemic networks with unique aperiodic spatial distribution of the surface enantiomers. Molecular symmetry was also found to have significant influence on the enantiopure self-assembly which resulted in the Kagome and brickwall networks and other less ordered extended superstructures with parallelogram pores. The theoretical findings of this contribution can be relevant to designing and on-surface synthesis of molecular superstructures with predefined geometries and functions. In particular, the predicted molecular architectures can stimulate experimental efforts to fabricate and explore new nanostructures, for example graphitic, having the composition and geometry proposed in our study.  相似文献   

7.
Self‐assembly of anisotropic plasmonic nanomaterials into ordered superstructures has become popular in nanoscience because of their unique anisotropic optical and electronic properties. Gold nanorods (GNRs) are a well‐defined functional building block for fabrication of these superstructures. They possess important anisotropic plasmonic characteristics that result from strong local electric field and are responsive to visible and near‐IR light. There are recent examples of assembling the GNRs into ordered arrays or superstructures through processes such as solvent evaporation and interfacial assembly. In this Minireview, recent progress in the development of the self‐assembled GNR arrays is described, with focus on the formation of oriented GNR arrays on substrates. Key driving forces are discussed, and different strategies and self‐assembly processes of forming oriented GNR arrays are presented. The applications of the oriented GNR arrays in optoelectronic devices are also overviewed, especially surface enhanced Raman scattering (SERS).  相似文献   

8.
Nanoparticle (NP) assembly has been extensively studied, and a library of NP superstructures has been synthesized. These intricate structures show unique collective optical, electronic, and magnetic properties. In this work, we report a bottom-up approach for fabricating spherical gold nanoparticle (AuNP) assemblies that mimic colloidosomes. Co-crystallization of lipoic acid-end-functionalized poly(ethylene oxide) (PEO) and AuNPs in solution via a self-seeding method led to the formation of hollow spherical NP assemblies named nanoparticle crystalsomes (NPCs). Due to the spherical shape, the translational symmetry of PEO crystals is broken in NPCs, which can be attributed to the competition between NP close packing and polymer crystallization. This was confirmed by tuning the NPC morphology via varying the self-seeding temperature, crystallization temperature, and PEO molecular weight. We envisage that this strategy paves the way to attaining exquisite morphological control of NP assemblies with broken translational symmetry.  相似文献   

9.
Helical superstructures are widely observed in nature, in synthetic polymers, and in supramolecular assemblies. Controlling the chirality (the handedness) of dynamic helical superstructures of molecular and macromolecular systems by external stimuli is a challenging task, but is of great fundamental significance with appealing morphology‐dependent applications. Light‐driven chirality inversion in self‐organized helical superstructures (i.e. cholesteric, chiral nematic liquid crystals) is currently in the limelight because inversion of the handedness alters the chirality of the circularly polarized light that they selectively reflect, which has wide potential for application. Here we discuss the recent developments toward inversion of the handedness of cholesteric liquid crystals enabled by photoisomerizable chiral molecular switches or motors. Different classes of chiral photoresponsive dopants (guests) capable of conferring light‐driven reversible chirality inversion of helical superstructures fabricated from different nematic hosts are discussed. Rational molecular designs of chiral molecular switches toward endowing handedness inversion to the induced helical superstructures of cholesteric liquid crystals are highlighted. This Review is concluded by throwing light on the challenges and opportunities in this emerging frontier, and it is expected to provide useful guidelines toward the development of self‐organized soft materials with stimuli‐directed chirality inversion capability and multifunctional host–guest systems.  相似文献   

10.
Self-assembling peptides have been previously designed that assemble into macroscopic membranes, nanotapes, and filaments through electrostatic interactions. However, the formation of highly ordered collagen-like fibrils, which display D-periodic features, has yet to be achieved. In this report, we describe for the first time a synthetic peptide system that self-assembles into a fibrous structure with well-defined periodicity that can be visualized by transmission electron microscopy (TEM). Specifically, we designed and synthesized a peptide that utilizes charged amino acids within the ubiquitous Xaa-Yaa-Gly triad sequence to bias the self-assembly into collagen-like homotrimeric helices that are capable of fibrillogenesis with the production of D-periodic microfibers. Potential molecular mechanisms for peptide assembly into triple-helical protomers and their subsequent organization into structurally defined, linear assemblies were explored through molecular dynamics (MD) simulations. The formation of thermodynamically stable complexes was attributed to the presence of strong electrostatic and hydrogen bond interactions at staggered positions along the linear assembly. This unexpected mimicry of native collagen structure using a relatively simple oligopeptide sequence establishes new opportunities for engineering linear assemblies with highly ordered nano- and microscale periodic features. In turn, the capacity to precisely design periodic elements into an assembly that faithfully reproduces these features over large length scales may facilitate the fabrication of ordered two- and three-dimensional fiber networks containing oriented biologically, chemically, or optically active elements.  相似文献   

11.
Much attention has been focused on exploiting novel strategies for the creation of hierarchical polymer assemblies by the control of the assembling number or the relative location among neighboring polymers. We here propose a novel strategy toward the creation of "hierarchical" single-walled carbon nanotube (SWNT) architectures by utilizing SWNT composites with cationic or anionic complementary semi-artificial beta-1,3-glucans as "building blocks". These beta-1,3-glucans are known to wrap SWNTs helically, to create one-dimensional superstructural composites. If the cationic composite is neutralized by an anionic composite, a well ordered SWNT-based sheet structure was created. Transmission electron microscopy (TEM) observation revealed that this sheet structure is composed of highly-ordered fibrous assemblies of SWNTs. This suggests that the cationic and anionic composites are tightly packed through electrostatic interactions. Moreover, both of the final assembly structures are readily tunable by adjusting the cation/anion ratio. The self-assembling modulation of functional polymers is associated with the progress in ultimate nanotechnologies, thus enabling us to create numerous functional nanomaterials. We believe, therefore, that the present system will extend the frontier of SWNT research to assembly chemistry including "hierarchical" superstructures.  相似文献   

12.
Development of functional materials capable of exhibiting chirality tunable circularly polarized luminescence (CPL) is currently in high demand for potential technological applications. Herein we demonstrate the formation of both left- and right-handed fluorescent helical superstructures from each enantiomer of a chiral tetraphenylethylene derivative through judicious choice of the solution processing conditions. Interestingly, both the aggregation induced emission active enantiomers exhibit handedness inversion of their supramolecular helical assemblies just by varying the solution polarity without any change in their molecular chirality. The resulting helical supramolecular aggregates from each enantiomer are capable of emitting circularly polarized light, thus enabling both right- and left-handed CPL from a single chiral material. The left- and right-handed supramolecular helical aggregates in the dried films have been characterized using spectroscopy, scanning electron microscopy, and transmission electron microscopy techniques. These new chiral aggregation induced emission compounds could find applications in devices where CPL of opposite handedness is required from the same material and would facilitate our understanding of the formation of helical assemblies with switchable supramolecular chirality.

The formation of both left- and right-handed helical superstructures with circularly polarized luminescence has been achieved in a chiral tetraphenylethylene derivative just by varying the solution polarity without any change in molecular chirality.  相似文献   

13.
A novel type of discotic polycyclic aromatic hydrocarbon (PAH) based on an enlarged dibenzo[a,c]phenazine core has been developed. The large conjugated mesogenic core with increased dipole moment derived from S,N heteroatoms facilitates the formation of highly ordered columnar superstructures both in solution and bulk. Columnar mesophases, including liquid crystal (LC) and plastic crystal (PC) assemblies could form unprecedentedly based on the same PAH core. The cores are delicately modulated by the peripherical alkoxy chains. Both mesogens have mechanochromic fluorescent (MCF) character, which is also structure dependent and correlated with the different mesophase formation. For the first time, MCF properties can be realized in such a large conjugated mesogenic system.  相似文献   

14.
Organization of biomolecules in two/three dimensional assemblies has recently aroused much interest in nanobiotechnology. In this context, the development of techniques for controlling spatial arrangement and orientation of the desired molecules to generate highly-ordered nanostructures in the form of a mono/multi layer is considered highly significant. The studies of monolayer films to date have focused on three distinct methods of preparation: (i) the Langmuir-Blodgett (LB) technique, involving the transfer of a monolayer assembled at the gas-liquid interface; (ii) self-assembly at the liquid-solid interface, based on spontaneous adsorption of desired molecules from a solution directly onto a solid surface; and (iii) Layer-by-layer (LBL) self-assembly at a liquid-solid interface, based on inter-layer electrostatic attractions for fabrication of multilayers. A variety of monolayers have been utilized to fabricate biomolecular electronic devices including biosensors. The composition of a monolayer based matrix has been found to influence the activity(ies) of biomolecule(s). We present comprehensive and critical analysis of ordered molecular assemblies formed by LB and self-assembly with potential applications to affinity biosensing. This critical review on fundamentals and application of ordered molecular assemblies to affinity biosensing is likely to benefit researchers working in this as well as related fields of research (401 references).  相似文献   

15.
Multiple properties of plasmonic assemblies are determined by their geometrical organization. While high degree of complexity was achieved for plasmonic superstructures based on nanoparticles (NPs), little is known about the stable and structurally reproducible plasmonic assemblies made up from geometrically diverse plasmonic building blocks. Among other possibilities, they open the door for the preparation of regiospecific isomers of nanoscale assemblies significant both from a fundamental point of view and optical applications. Here, we present a synthetic method for complex assemblies from NPs and nanorods (NRs) based on selective modification of NRs with DNA oligomers. Three types of assemblies denoted as End, Side, and Satellite isomers that display distinct elements of regiospecificity were prepared with the yield exceeding 85%. Multiple experimental methods independently verify various structural features, uniformity, and stability of the prepared assemblies. The presence of interparticle gaps with finely controlled geometrical parameters and inherently small size comparable with those of cellular organelles fomented their study as intracellular probes. Against initial expectations, SERS intensity for End, Side, and Satellite isomers was found to be dependent primarily on the number of the NPs in the superstructures rationalized with the help of electrical field simulations. Incubation of the label-free NP-NR assemblies with HeLa cells indicated sufficient field enhancement to detect structural lipids of mitochondria and potentially small metabolites. This provided the first proof-of-concept data for the possibility of real-time probing of the local organelle environment in live cells. Further studies should include structural optimization of the assemblies for multitarget monitoring of metabolic activity and further increase in complexity for applications in transformative optics.  相似文献   

16.
The assembly of inorganic nanoparticles (NPs) into 3D superstructures with defined morphologies is of particular interest. A novel strategy that is based on recrystallization‐induced self‐assembly (RISA) for the construction of 3D Cu2O superstructures and employs Cu2O mesoporous spheres with diameters of approximately 300 nm as the building blocks has now been developed. Balancing the hydrolysis and recrystallization rates of the CuCl precursors through precisely adjusting the experimental parameters was key to success. Furthermore, the geometry of the superstructures can be tuned to obtain either cubes or tetrahedra and was shown to be dependent on the growth behavior of bulk CuCl. The overall strategy extends the applicability of recrystallization‐based processes for the guided construction of assemblies and offers unique insights for assembling larger particles into complicated 3D superstructures.  相似文献   

17.
Hexameric metallomacrocycles are a new class of ordered rigid-macromolecules which possess unique structural, electronic, and physical characteristics. Directed- and self-assembly methods for the construction of these stable bis(terpyridine)-based materials are investigated by using both Fe(II) and Ru(II) as the coordinating metals. These heterometallomacrocycles and their homocounterparts are structurally compared, and their attendant electrochemical properties are analyzed and evaluated. These studies demonstrate the potential to create stable, nanoscale, doughnut-shaped, molecular assemblies with envisioned ramifications for energy storage and release, as well as nanoscale molecular electronic and magnetic devices.  相似文献   

18.
The structure and conformation of three self-assembled supramolecular species, a rectangle, a square, and a three-dimensional cage, on Au111 surfaces were investigated by scanning tunneling microscopy. These supramolecular assemblies adsorb on Au111 surfaces and self-organize to form highly ordered adlayers with distinct conformations that are consistent with their chemical structures. The faces of the supramolecular rectangle and square lie flat on the surface, preserving their rectangle and square conformations, respectively. The three-dimensional cage also forms well-ordered adlayers on the gold surface, forming regular molecular rows of assemblies. When the rectangle and cage were mixed together, the assemblies separated into individual domains, and no mixed adlayers were observed. These results provide direct evidence of the noncrystalline solid-state structures of these assemblies and information about how they self-organize on Au111 surfaces, which is of importance in the potential manufacturing of functional nanostructures and devices.  相似文献   

19.
Block-copolymer-controlled growth of CaCO3 microrings   总被引:2,自引:0,他引:2  
A novel way for directed solution growth of hollow superstructures of CaCO3 has been successfully developed on the basis of controlled self-assembly and polymer concentration gradients using a double-hydrophilic block copolymer with a hydrophobic modification as a directing agent. A formation mechanism of such rings is proposed on the basis of the formation of CaCO3 nanoparticles in unstructured block copolymer assemblies with subsequent aggregation of these primary nanoparticles. This leads to the formation of a polymer concentration gradient from the inside to the outside of the particle. As the polymer contains multiple chelating units, this leads to a selective dissolution of the center of the particle.  相似文献   

20.
Mechanically interlocked molecules incorporating cucurbituril (CB[6]) as a molecular 'bead' and their supramolecular assemblies are described. An efficient synthesis of 1D, 2D and 3D polyrotaxanes with high structural regularity and molecular necklaces has been achieved by a combination of self-assembly and coordination chemistry. The functional aspects of these interlocked molecules and their supramolecular assemblies, including molecular machines and switches based on [2]rotaxanes, a 2D polyrotaxane with large cavities and channels, pseudorotaxane-terminated dendrimers, and interaction of pseudorotaxanes containing polyamines and CB[6] with DNA are also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号