首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Due to their amphiphilic structure, calixarenes adsorb at the air/water interface and form stable Langmuir films. We have explored the effect of salts on calix[6]- and calix[8]arene spreading isotherms at the air/water interface. A wide range of different potassium salts was used in the subphase: KCl, KI, KBr, KSCN, KNO(3), CH(3)COOK, K(2)SO(4), and K(3)PO(4). The differences in Langmuir isotherms are due to the presence of different anions in the subphase, to the different conformations of the ligands at the interface, and to the different complexing affinities of calix[6]- and calix[8]arene for potassium ions. The two systems show a significant specific ion effect that can be discussed in terms of Hofmeister series. Characteristic monolayer parameters, e.g., limiting area (A(lim)), collapse pressure (pi(coll)), modulus of compressibility (C(s)(-1)), and surface potential (DeltaV), are discussed in terms of some physicochemical parameters that reflect dispersion forces: in particular, anion polarizabilities, lyotropic number (N), molar surface tension increment (sigma), and partial molar volume (nu(s)).  相似文献   

2.
Calix[4]arene derivatives containing ferrocene units at the upper rim have been synthesized and their anion‐binding and sensing investigated towards anions such as chloride, bromide and hydrogen sulfate by cyclic voltammetry. Electrochemical studies show that these redox‐active ligands electrochemically recognize chloride and bromide anions. These compounds have excellent selectivity for chloride and bromide ions, in the comparison with hydrogen sulfate anion. With ferrocenyl Schiff base calix[4]arene 1 an anodic shift as large as 302 mV is observed on addition of four equivalents of Cl anion. Also electrochemical and UV–vis spectroscopic titrations ferrocenyl calix[4]arene derivatives 1 with chloride and bromide ions and 2 (only with Cl) indicate a 1:1 binding‐stiochiometry. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Lanthanide complexes have been developed and are reported herein. These complexes were derived from a terpyridine-functionalized calix[4]arene ligand, chelated with Tb3+ and Eu3+. Synthesis of these complexes was achieved in two steps from a calix[4]arene derivative: (1) amide coupling of a calix[4]arene bearing carboxylic acid functionalities and (2) metallation with a lanthanide triflate salt. The ligand and its complexes were characterized by NMR (1H and 13C), fluorescence and UV-vis spectroscopy as well as MS. The photophysical properties of these complexes were studied; high molar absorptivity values, modest quantum yields and luminescence lifetimes on the ms timescale were obtained. Anion binding results in a change in the photophysical properties of the complexes. The anion sensing ability of the Tb(III) complex was evaluated via visual detection, UV-vis and fluorescence studies. The sensor was found to be responsive towards a variety of anions, and large binding constants were obtained for the coordination of anions to the sensor.  相似文献   

4.
Abstract

Recognition ability of both cationic pillar[5]arene and calix[4]arene has been studied in aqueous media. Anion complexation can be evaluated from their ability to complex their counterions as well as an added external organic anion. DOSY NMR experiments and fluorescence quenching show that pillararenes have a larger ability for including their own counterions than calixarenes irrespective of the anion (tetrafluoroborate or chloride or bromide) and the structure of the cationic moiety (trimethylammonium or methylimidazolium). Counterion complexation shows a picture where four to five positive charges of the pillar[5]arene are neutralised, meanwhile only one positive charge of the calixarene is neutralised for a 1 mM solution of the macrocycle. Irrespective of the smaller net positive charge in the pillar[5]arene, its binding ability for organic anions (toluenesulfonate or hydroxybenzoate) is larger than for calix[4]arene allowing a better accommodation of the guest in its cavity. The larger separation between the cationic groups of the receptor and its electron-rich aromatic region improves the anion recognition ability for pillar[5]arene.  相似文献   

5.
The article describes the synthesis of a family of novel calix[4]arene ionophores, 25,27-bis-(2-aminomethylpyridine-propoxy)-26,28-dihydroxycalix[4]arene (5a), 25,27-bis-(3-aminomethylpyridine-propoxy)-26,28-dihydroxycalix[4]arene (5b) and two chromogenic calix[4]arenes, 5,17-dinitro-25,27-bis-(2-aminomethylpyridine-propoxy)-26,28-dihydroxycalix[4]arene (5c), 5,17-dinitro-25,27-bis-(3-aminomethylpyridine-propoxy)-26,28-dihydroxycalix[4]arene (5d) bearing pyridinium units. In the synthesis, the upper and lower rims of p-tert-butylcalix[4]arene were modified in order to acquire binding sites for the recognition of arsenate and dichromate anions. It has been observed that protonated alkylammonium forms of the ionophores showed high affinity toward dichromate and arsenate anions.  相似文献   

6.
The liquid–liquid extraction of a series of amino acid methyl esters has been carried out with functionalised calix[4]arene (5,11,17,23-tetrakis(N-methylpiperazino)-25,26,27,28-tetrahydroxycalix[4]arene) from an aqueous phase into a chloroform phase as ion pairs in the presence of picrate ion or tropaeolin 00 as counter ion in order to study the molecular recognition properties of this receptor. The active transport assisted by pH gradient of amino acids as ion pairs through liquid membrane employing the functionalised calix[4]arene as carrier has been investigated. The results showed that the receptor exhibits good extractability towards amino acids and it can also act as carrier through liquid membrane aiming to the separation of amino acids. It was highlighted that the anion nature used as counter ion, the structure of calix[4]arene, and the structure of amino acids are responsible for the experimental results obtained. High yields in both amino acids extraction and transport were obtained for picrate ion used as counter ion.  相似文献   

7.
[Structure: see text]. The pKa values for calixarenes in MeCN have been determined by selective titration with bases using a spectroscopic method. These values are as follows: calix[4]arene pKa(1) = 19.06 +/- 0.22, pKa(2) > 33; calix[6]arene pKa(1) = 15.59 +/- 0.06, pKa(2) = 23.85 +/- 0.35, pKa(3) > 33; calix[8]arene pKa(1) = 17.20 +/- 0.20, pKa(2) = 20.32 +/- 0.31, pKa(3) > 33. The trends in acidity are rationalized using structures generated by a DFT model. For mono-deprotonation, the degree and nature of hydrogen bonding in the anion is the dominant factor; for di-deprotonation, spatial separation of the anionic charges becomes important.  相似文献   

8.
Reactions of UCl4 with calix[n]arenes (n = 4, 6) in THF gave the mononuclear [UCl2(calix[4]arene - 2H)(THF)2].2THF (.2THF) and the bis-dinuclear [U2Cl2(calix[6]arene - 6H)(THF)3]2.6THF (.6THF) complexes, respectively, while the mono-, di- and trinuclear compounds [Hpy]2[UCl3(calix[4]arene - 3H)].py (.py), [Hpy](4)[U2Cl6(calix[6]arene - 6H)].3py (.3py), [Hpy]3[U2Cl5(calix[6]arene - 6H)(py)].py (.py) and [Hpy]6[U3Cl11(calix[8]arene - 7H)].3py (.3py) were obtained by treatment of UCl4 with calix[n]arenes (n = 4, 6, 8) in pyridine. The sodium salt of calix[8]arene reacted with UCl4 to give the pentanuclear complex [U{U2Cl3(calix[8]arene - 7H)(py)5}2].8py (.8py). Reaction of U(acac)4 (acac = MeCOCHCOMe) with calix[4]arene in pyridine afforded the mononuclear complex [U(acac)2(calix[4]arene - 2H)].4py (.4py) and its treatment with the sodium salt of calix[8]arene led to the formation of the 1D polymer [U2(acac)6(calix[8]arene - 6H)(py)4Na4]n. The sandwich complex [Hpy]2[U(calix[4]arene - 3H)2][OTf].4py (.4py) was obtained by treatment of U(OTf)4 (OTf = OSO2CF3) with calix[4]arene in pyridine. All the complexes have been characterized by X-ray diffraction analysis.  相似文献   

9.
In this study, the thermal behavior of three hydrated water-soluble 4-sulphonato calix[n]arenes was investigated. The melting points, heats of fusion, and heats of solution of the calix[4]arene, calix[6]arene and calix[8]arene were 277, 262, and 270°C; 192, 242 and 351 kJ/mol; and 30, 58 and 63 kJ/mol, respectively. Lower heat of fusion, smaller increase in entropy and smaller heat of solution of the calix[4]arene compared to the calix[6]arene and calix[8]arene showed that less heat was required to break up the crystal lattice of the smaller macromolecule. This apparent anomaly is rationalized in terms of smaller cooperativity of interaction between the molecules of calix[4]arene in the crystal lattice, although the strength of the individual interactions is stronger as evidenced by the higher melting point. TGA analysis indicated that about 17–20% of water was associated with the calix[n]arenes. Both TGA and hot stage microscopy results indicated that upon heating these molecules underwent stepwise water loss. TGA kinetics showed that the 4-sulphonato-calix[8]arene lost water easier than the other two calixarenes. The moisture adsorption behavior of all calixarenes followed type II isotherms. For the same amount of material, the calix[6]arene adsorbed more moisture than the calix[4]arene and the calix[8]arene. Moreover, dehydrated less crystalline 4-sulphonic-calix[n]arenes powders are hydroscopic.

  相似文献   

10.
The synthesis, complete characterization, and solid state structural and solution conformation determination of calix[n]arenes (n = 4, 6, 8) is reported. A complete series of X-ray structures of the alkali metal salts of calix[4]arene (HC4) illustrate the great influence of the alkali metal ion on the solid state structure of calixanions (e.g., the Li salt of monoanionic HC4 is a monomer; the Na salt of monoanionic HC4 forms a dimer; and the K, Rb, and Cs salts exist in polymeric forms). Solution NMR spectra of alkali metal salts of monoanionic calix[4]arenes indicate that they have the cone conformation in solution. Variable-temperature NMR spectra of salts HC4.M (M = Li, Na, K, Rb, Cs) show that they possess similar coalescence temperatures, all higher than that of HC4. Due to steric hindrance from tert-butyl groups in the para position of p-tert-butylcalix[4]arene (Bu(t)C4), the alkali metal salts of monoanionic Bu(t)C4 exist in monomeric or dimeric form in the solid state. Calix[6]arene (HC6) and p-tert-butylcalix[6]arene (Bu(t)C6) were treated with a 2:1 molar ratio of M(2)CO(3) (M = K, Rb, Cs) or a 1:1 molar ratio of MOC(CH(3))(3) (M = Li, Na) to give calix[6]arene monoanions, but calix[6]arenes react in a 1:1 molar ratio with M(2)CO(3) (M = K, Rb, Cs) to afford calix[6]arene dianions. Calix[8]arene (HC8) and p-tert-butylcalix[8]arene (Bu(t)()C8) have similar reactivity. The alkali metal salts of monoanionic calix[6]arenes are more conformationally flexible than the alkali metal salts of dianionic calix[6]arenes, which has been shown by their solution NMR spectra. X-ray crystal structures of HC6.Li and HC6.Cs indicate that the size of the alkali metal has some influence on the conformation of calixanions; for example, HC6.Li has a cone-like conformation, and HC6.Cs has a 1,2,3-alternate conformation. The calix[6]arene dianions show roughly the same structural architecture, and the salts tend to form polymeric chains. For most calixarene salts cation-pi arene interactions were observed.  相似文献   

11.
The regioselective nitration of 25,27-dipropoxythiacalix[4]arene was carried out as a key step in the synthesis of thiacalix[4]arene derivative bearing two arylureido functions on the upper rim. The preorganisation of ureido units using the thiacalix[4]arene/calix[4]arene moieties as a molecular scaffold gave novel anion receptors. These compounds, albeit based on hydrogen bonding interactions, show good complexation ability even in highly HB-competitive solvent, such as DMSO. Direct comparison of otherwise identical structures 6a and 7a revealed remarkable dominance of the thiacalix[4]arene derivative over its classical analogue in anion binding.  相似文献   

12.
The synthesis, structure and anion binding properties of the first calix[4]arene‐based [2]rotaxane anion host systems are described. Rotaxanes 9? Cl and 12? Cl, consisting of a calix[4]arene functionalised macrocycle wheel and different pyridinium axle components, are prepared via adaption of an anion templated synthetic strategy to investigate the effect of preorganisation of the interlocked host’s binding cavity on anion binding. Rotaxane 12? Cl contains a conformationally flexible pyridinium axle, whereas rotaxane 9? Cl incorporates a more preorganised pyridinium axle component. The X‐ray crystal structure of 9? Cl and solution phase 1H NMR spectroscopy demonstrate the successful interlocking of the calix[4]arene macrocycle and pyridinium axle components in the rotaxane structures. Following removal of the chloride anion template, anion binding studies on the resulting rotaxanes 9? PF6 and 12? PF6 reveal the importance of preorganisation of the host binding cavity on anion binding. The more preorganised rotaxane 9? PF6 is the superior anion host system. The interlocked host cavity is selective for chloride in 1:1 CDCl3/CD3OD and remains selective for chloride and bromide in 10 % aqueous media over the more basic oxoanions. Rotaxane 12? PF6 with a relatively conformationally flexible binding cavity is a less effective and discriminating anion host system although the rotaxane still binds halide anions in preference to oxoanions.  相似文献   

13.
We present the rational design and anion-binding properties of the first anion-templated pseudorotaxanes and catenanes in which the "wheel" component is provided by a calix[4]arene macrobicyclic unit. The designs and syntheses of two new calix[4]arene macrobicycles, 2 and 3, are presented, and the abilities of these new species both to bind anions and to undergo anion-dependent pseudorotaxane formation are demonstrated. Furthermore, it is shown that performing ring-closing metathesis reactions on some of these pseudorotaxane assemblies gives novel catenane species 14 and 15, in which the yield of interlocked molecule obtained is critically dependent on the presence of a suitable anion template, namely, chloride. Exchange of the chloride anion in catenane 14 a for hexafluorophosphate gives catenane 14 d, which contains a unique anion-binding domain defined by the permanently interlocked hydrogen-bond-donating calix[4]arene macrobicycle and pyridinium macrocycle fragments. The anion-binding properties of this domain are presented, and shown to differ from non-interlocked components.  相似文献   

14.
杯芳烃与NO2硝化反应的研究   总被引:1,自引:0,他引:1  
于付江  杨海军  李勇 《有机化学》2006,26(4):482-486
系统地研究了羟基杯[n]芳烃、甲氧基杯[n]芳烃和对特丁基杯[n]芳烃(n=4, 6, 8)与NO2气体的硝化反应, 发现可以成功地得到25,26,27,28-四羟基杯[4]芳烃、37,38,39,40,41,42-六羟基杯[6]芳烃以及25,26,27,28-四甲氧基杯[4]芳烃的对位全硝化产物, 产率分别为90%, 70%和40%; 尤其是25,26,27,28-四羟基杯[4]芳烃与NO2的反应20 min即可完成. 认为共振式酚氧负离子结构是影响该类硝化反应的关键, 并对反应机理进行了探讨.  相似文献   

15.
The complexation of zinc calix[4]arene or calix[4]pyrrole bisporphyrinates with alkali metal cations, halide anions, and triethylenediamine was studied by 1H NMR spectroscopy. It was established that the binding of molecules and/or charged particles by various fragments of calix[4]arene and calix[4]pyrrole porphyrins are interrelated processes. This makes it possible to use one process (for example, complexation of the calix[4]arene fragment of the macrocycle with alkali metal cations or complexation of the calix[4]pyrrole fragment with halide ions) as a tool for controlling another process (complexation of the porphyrin fragments of the macrocycle with neutral molecules).  相似文献   

16.
Tetrakis-(4-carbamoylphenyl)-substituted and tetrakis-(4-amidophenyl)-substituted calix[4]arenes as well as the monomeric biphenylcarbamate have been synthesized as fluorescent receptors for anion sensing. Their binding properties with various anions including F-, CH3COO-, Ph-COO-, and H2PO4- were investigated by fluorescence titrations, Job plot experiments, 1H NMR spectroscopies, and ESI-MS measurements. Importantly, we have found that calix[4]arene-based sensors exhibit greatly enhanced binding affinity and selectivity toward carboxylates. The binding associations of tetrakis-(4-carbamoylphenyl)-substituted calix[4]arene for carboxylates are 1-2 orders of magnitude greater than those of the monomeric biphenylcarbamate sensor. Such an enhancement in the binding affinity and selectivity is attributed to the cooperative binding of the multiple ligating groups as revealed from the ab inito DFT calculations. Although tetrakis-(4-amidophenyl)-substituted calix[4]arene exhibited relatively weaker binding affinity toward anions, its superior binding selectivity for acetate ion over fluoride ion is evident. Our results also suggest that carbamate functionality is a useful H-bond donor for hydrogen-bonding interactions in molecular recognition and supramolecular chemistry.  相似文献   

17.
The protonolysis reaction of the germanium(II) amide Ge[N(SiMe3)2]2 with calix[4]arene and calix[8]arene furnishes the two germanium(II) calixarene complexes {calix[4]}Ge2 and {calix[8]}Ge4, respectively, which have been crystallographically characterized. The calix[4]arene complex contains a Ge2O2 rhombus at the center of the molecule and is one of the only four germanium(II) calix[4]arenes that have been structurally characterized. The calix[8]arene species is the first reported germanium calix[8]arene complex, and it exhibits an overall bowl-shaped structure which contains two Ge2O2 fragments. The latter complex reacts with Fe2(CO)9 to yield an octairon compound, which has also been structurally characterized and contains four GeFe2 triangles arranged around the macrocyclic ring. The germanium(II) centers are oxidized to germanium(IV) in this process, with concomitant reduction of the neutral diiron species to Fe2(CO)(8)2- anions.  相似文献   

18.
In this study, seven new compounds p-(4-butyl-phenylazo)calix[6]arene(1), p-(4-(phenylazo)phenylazo)calix[6]arene (2),p-(4-hydroxyphenylazo)calix[6]arene (3),p-{4-[N-(thiazol-2-yl)sulfamoyl]phenylazo\}calix[6]arene(4), p-(4-acetamidophenylazo)calix[6]arene (5),p-(thiazol-2-ylazo)calix[6]arene (6) andp-(2-sulfanylphenylazo)calix[6]arene (7) have been synthesizedfrom calix[6]arene by diazo coupling with the corresponding aromaticamines. UV-Vis, IR, 1H and 13C NMR spectral data have been used to elucidate the structures of the compounds elemental analyses  相似文献   

19.
The transition metal-directed self-assembly of dithiocarbamate ligand functionalized upper and lower rim calix[4]arenes affords novel dimeric bimetallic bis(calix[4]arene) species as determined by a combination of analytical methods including X-ray crystallography. An exception is a zinc(II) dithiocarbamate upper rim calix[4]arene assembly which is monomeric in nature. Electrochemical investigations reveal the bimetallic copper(II) bis(calix[4]arene) systems can electrochemically sense dihydrogen phosphate and carboxylate anions via significant cathodic perturbations of the respective copper(II)/(III) dithiocarbamate oxidation wave.  相似文献   

20.
The self-aggregation of five amphiphilic p-sulfonatocalix[n]arenes bearing alkyl chains at the lower rim was investigated by NMR spectroscopy and electrical conductivity. The critical micelle concentration was determined, and the tendency of this special class of surfactants to self-aggregate in aqueous solution was analyzed as a function of the alkyl chain length and the number of aromatic units in the macrocyclic ring. The structure of the surfactants in the monomeric and micellized states was elucidated by means of (1)H NMR and, in the case of the calix[6]arene derivative, with 2D NMR experiments. While all amphiphilic calix[4]arenes studied here are blocked in the cone conformation, in the monomeric state the calix[6]arene adopts a pseudo-1,2,3-alternate conformation and the calix[8]arene is conformationally mobile. These calixarenes undergo an aggregation-induced conformational change, adopting the cone conformation in the micelles. The structure and size of the aggregates were studied by diffusion ordered spectroscopy (DOSY) experiments, and the results indicate that these surfactants self-assemble into ellipsoidal micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号