首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The radical co‐ and terpolymerization of 4‐[(α,β,β‐trifluorovinyl)oxy]bromo benzene (TFVOBB) with 1,1‐difluoroethylene (or vinylidene fluoride, VDF, or VF2), hexafluoropropene (HFP), perfluoromethyl vinyl ether (PMVE), and chlorotrifluroroethylene (CTFE) is presented. Although TFVOBB could be thermocyclodimerized, it could not homopolymerize under radical initiation. TFVOBB could be copolymerized in solution under a radical initiator with VDF or CTFE comonomers, while its copolymerization with HFP or PMVE were unsuccessful. The terpolymerization of TFVOBB with VDF and HFP, or VDF and PMVE, or VDF and CTFE also led to original fluorinated terpolymers bearing bromoaromatic side‐groups. The conditions of co‐ and terpolymerization were optimized in terms of the nature of the radical initiators, and of the nature of solvents (fluorinated or nonhalogenated). Various monomer concentrations in the co‐ and terpolymers were assessed by 19F and 1H‐NMR spectroscopy. The thermal and physico chemical properties were also studied. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5077–5097, 2004  相似文献   

2.
Fluoropolymers are usually insoluble in organic solvents. Insolubility of fluoropolymers limits basic characterization such as microstructural investigations. In the family of fluoropolymers, terpolymer of tetrafluorethylene (TFE), hexafluoropropylene (HFP), and vinylidene fluoride (VDF), named THV is one of the newest members. There are nine grades of THV available. Among the nine grades, THV‐221 G is an ideal model polymer for basic characterization purposes. THV‐221 G is soluble in solvents such as acetone and ethyl acetate. In the current report, both homonuclear and heteronuclear 2D NMR experiments were employed in solution on THV‐221 G. The homonuclear gradient correlation spectroscopy NMR measurement revealed that THV has two adjacent TFE units in addition to TFE‐HFP sequence orders. The fraction of the microstructures is quantified by the analysis of 1D solution 19F NMR spectrum. Further, the gradient heteronuclear single quantum coherence experiment helped with the clarification of chemical environments of the units TFE, HFP, and VDF. The 1D solution 13C NMR spectrum was helpful in clarifying sequence assignments of VDF. It is concluded that THV is a random polymer with a limited fraction of TFE‐TFE and TFE‐HFP sequence orders in addition to head‐to‐tail polymerization of VDF unit. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The radical co‐ and terpolymerization of perfluoro(4‐methyl‐3,6‐dioxaoct‐7‐ene) sulfonyl fluoride (PFSVE) with 1,1‐difluoroethylene (or vinylidene fluoride, VDF or VF2), hexafluoropropene (HFP), chlorotrifluoroethylene (CTFE), and bromotrifluoroethylene (BrTFE) is presented. Although PFSVE could not homopolymerize under radical initiation, it could be copolymerized in solution under a radical initiator with VDF, while its copolymerizations with HFP or CTFE led to oligomers in low yields. The terpolymerizations of PFSVE with VDF and HFP, with VDF and CTFE, or with VDF and BrTFE also led to original fluorinated terpolymers bearing sulfonyl fluoride side‐groups. The conditions of co‐ and terpolymerization were optimized in terms of the nature and the amount of the radical initiators, of the nature of solvents (fluorinated or nonhalogenated), and of the initial amounts of fluorinated comonomers. The different mol % contents of comonomers in the co‐ and terpolymers were assessed by 19F NMR spectroscopy. A wide range of co‐ and terpolymers containing mol % of PFSVE functional monomer ranging from 10 to 70% was produced. The kinetics of copolymerization of VDF with PFSVE enabled to assess the reactivity ratios of both comonomers: rVDF = 0.57 ± 0.15 and rPFSVE = 0.07 ± 0.04 at 120 °C. The thermal and physicochemical properties were also studied. Moreover, the glass transition temperatures (Tgs) of poly(VDF‐co‐PFSVE) copolymers containing different amounts of VDF and PFSVE were determined and the theoretical Tg of poly(PFSVE) homopolymer was deduced. Then, the hydrolysis of the ? SO2F into ? SO3H function was investigated and enabled the synthesis of fluorinated copolymers bearing sulfonic acid functions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1814–1834, 2007  相似文献   

4.
The plasma homo- and copolymerizations of tetrafluoroethylene (TFE) and chlorotrifluoroethylene (CTFE) in a capacitively coupled tubular reactor (TR) with external electrodes were studied by means of microgravimetry and FT-IR and XPS analyses. The deposition rates for CTFE/TFE plasma copolymers, as well as the ratios of IR absorbances at 1180 and 1225 cm−1, and the XPS-derived Cl/C and F/C ratios, varied regularly with mol % CTFE in the feed, all of which results were dependent upon the rf power at which the plasma copolymerizations were conducted. The deposition rates for the plasma homopolymers of TFE (PPTFE) and CTFE (PPTCFE) depended markedly on rf power (W) and monomer molar flow rate (F). The F/C ratio for PPTFE was nearly independent of the composite parameter,W/FM (whereM is the monomer molecular weight), while for PPCTFE, the F/C ratio decreased significantly and the Cl/C ratio increased slightly with increase inW/FM. The percentage of carbon as CF3 was 20–24% in PPTFE and 7–14% in PPCTFE. Plots of deposition rate versusW/FM for PPTFE and PPCTFE obtained in a TR differed considerably from corresponding plots in the literature for the same homopolymers prepared in a glass-cross or bell-jar reactor.  相似文献   

5.
Random THV terpolymers consisting of tetrafluoroethylene (TFE), hexafluoropropylene (HFP), and vinylidene fluoride (VDF) are viable alternatives to polytetrafluoroethylene (PTFE) combining excellent chemical stability and thermoplastic processability. Although the properties of THV may be modified by crystallization, little is known on how crystallization is influenced by the chain microstructure of THV. We analyzed the chain microstructure of THV‐221G by solid‐state 19F NMR spectroscopy under fast magic angle spinning, revealing that THV‐221G contains 43.8 mol % TFE, 46.0 mol % VDF, and 10.2 mol % HFP. Sequence analysis revealed that the TFE units are preferentially located next to other TFE units. The HFP units, which are obstacles to crystallization because of their bulky CF3 side groups, are preferentially located next to VDF units. WAXS measurements correspondingly revealed the presence of THV‐221G crystals with PTFE‐like packing and of further THV‐221G crystal populations with widened d‐spacings caused by the incorporation of certain amounts of HFP units into the THV‐221G crystals. Under confinement imposed by the cylindrical nanopores of self‐ordered alumina, the THV‐221G melting point decreased with decreasing pore diameter. Although direct impingement of the growing THV‐221G crystals on the pore walls is unlikely, the geometric confinement limits the access of growing THV‐221G crystals to crystallizable THV‐221G chain segments. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1402–1408  相似文献   

6.
Preparation of functional fluoromaterials through chemical modification of traditional fluoropolymers has been recognized as an economic and convenient strategy to expand the application areas of fluoropolymers. Poly(vinylidene fluoride‐co‐chlorotrifluoroethylene)‐grafted‐polyacrylonitrile (P(VDF‐co‐CTFE)‐g‐PAN) has been successfully synthesized via single electron transfer–living radical polymerization (SET–LRP) process initiated with macroinitiator P(VDF‐co‐CTFE) in the presence of trace amount of Cu(0)/tris(2(dimethylamino)ethyl)amine (Me6‐TREN) in dimethyl sulfoxide (DMSO) at ambient temperature. The typical side reactions happened on P(VDF‐co‐CTFE) induced by the nitrogen‐containing solvents and high reaction temperature in atom transfer radical polymerization process could be avoided in SET–LRP process by using the mild reaction conditions. Well‐controlled polymerization features were observed under varied reaction conditions including the different reaction temperature, catalyst concentration, as well as monomer amount in feed. An induction period of 0.5–1.0 h in the polymerization procedure was observed at low temperature, which may be attributed to the Cu2O from the surface of the Cu(0) powder. When Cu(0) catalyst is activated, the introduction period is eliminated. The polymerization rates were decelerated by adding excessive Me6‐TREN for the formation of more stable CuCl2/(Me6‐TREN)2. The structure of P(VDF‐co‐CTFE)‐g‐PAN was demonstrated by FTIR, NMR, DSC, and TGA. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
A vinyl ether bearing a carbonate side group (2‐oxo‐1,3‐dioxolan‐4‐yl‐methyl vinyl ether, GCVE) was synthesized and copolymerized with various commercially available fluoroolefins [chlorotrifluoroethylene (CTFE), hexafluoropropylene (HFP), and perfluoromethyl vinyl ether (PMVE)] by radical copolymerization initiated by tert‐butyl peroxypivalate. Although HFP, PMVE, and vinyl ether do not homopolymerize under radical conditions, they copolymerized easily yielding alternating poly(GCVE‐alt‐F‐alkene) copolymers. These alternating structures were confirmed by elemental analysis as well as 1H, 19F, and 13C NMR spectroscopy. All copolymers were obtained in good yield (73–85%), with molecular weights ranging from 3900 to 4600 g mol?1 and polydispersities below 2.0. Their thermogravimetric analyses under air showed decomposition temperatures at 10% weight loss (Td,10%) in the 284–330°C range. The HFP‐based copolymer exhibited a better thermal stability than those based on CTFE and PMVE. The glass transition temperatures were in the 15–65°C range. These original copolymers may find potential interest as polymer electrolytes in lithium ions batteries. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
To address the challenge of metal contamination, a “graft from” approach via organocatalyzed atom transfer radical polymerization (O‐ATRP) is developed to synthesize poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) (P(VDF‐co‐CTFE)) graft copolymers. N‐phenylphenothiazine is utilized as a model organic photoredox catalyst for catalyzing the (co)polymerization of methyl methacrylate (MMA), methacrylate (MA), and n‐butyl acrylate (BA). By employing this technique, high temporal control of polymerization and graft content are achieved. A series of P(VDF‐co‐CTFE)‐g‐PMMA, P(VDF‐co‐CTFE)‐g‐PMA, and P(VDF‐co‐CTFE)‐g‐PBA is prepared under mild conditions. The resultant graft copolymer can be used as macroinitiator to re‐initiate O‐ATRP to synthesize P(VDF‐co‐CTFE)‐g‐(PMMA‐b‐PMA), which might exhibit the potential application as novel dielectric material.  相似文献   

9.
A novel graft copolymer consisting of a poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) backbone and poly(glycidyl methacrylate) side chains, that is, P(VDF‐co‐CTFE)‐g‐PGMA, was synthesized through atom transfer radical polymerization (ATRP) using CTFE units as a macroinitiator. Successful synthesis and microphase‐separated structure of the polymer were confirmed by 1H NMR, FTIR spectroscopy, and TEM. As‐synthesized P(VDF‐co‐CTFE)‐g‐PGMA copolymer was sulfonated by sodium bisulfite, followed by thermal crosslinking with sulfosuccinic acid (SA) via the esterification to produce grafted/crosslinked polymer electrolyte membranes. The IEC values continuously increased with increasing SA content but water uptake increased with SA content up to 10 wt %, above which it decreased again as a result of competitive effect between crosslinking and hydrophilicity of membranes. At 20 wt % of SA content, the proton conductivity reached 0.057 and 0.11 S/cm at 20 and 80 °C, respectively. The grafted/crosslinked P(VDF‐co‐CTFE)‐g‐PGMA/SA membranes exhibited good mechanical properties (>400 MPa of Young's modulus) and high thermal stability (up to 300 °C), as determined by a universal testing machine (UTM) and TGA, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1110–1117, 2010  相似文献   

10.
The radical copolymerisation in solution of vinylidene fluoride (or 1,1-difluoroethylene (VDF)) with hexafluoropropylene (HFP) initiated by di-tert-butyl peroxide is presented. A series of eight copolymerisation reactions was investigated with initial [VDF]o/[HFP]o molar ratios ranging from 5.0/95.0 to 85.2/14.8. Both co-monomers copolymerised in this range of copolymerisation. Moreover, only VDF homopolymerised in these conditions. The copolymer compositions of these random-type copolymers were calculated by means of 19F NMR spectroscopy which allowed the respective amount of each monomeric unit in the copolymer to be quantified. The Tidwell and Mortimer method led to the assessment of the reactivity ratios, ri, of both co-monomers showing a higher incorporation of VDF in the copolymer (rHFP = 0.12 ± 0.05 and rVDF = 2.9 ± 0.6 at 393 K). Alfrey-Price's Q and e values of HFP were calculated to be 0.002 (from QVDF = 0.008) or 0.009 (from QVDF = 0.015) and +1.44 (versus eVDF = 0.40) or +1.54 (versus eVDF = 0.50), respectively, indicating that HFP is an electron-accepting monomer. The thermal properties of these fluorinated copolymers were also determined. Except for those containing a high amount of VDF, they were amorphous. Each showed one glass transition temperature (Tg) only, and from known laws of Tg, that of the homopolymer of HFP was assessed. It was compared with that obtained from the literature after extrapolation and is discussed.  相似文献   

11.
The grafting polymerization of styrene initiated by the alkyl chloride groups of poly(CTFE‐alt‐VE) and poly[(CTFE‐alt‐VE)‐co‐(HFP‐alt‐VE] copolymers (where CTFE, HFP, and VE stand for chlorotrifluoroethylene (CTFE), hexafluoropropylene (HFP), and vinyl ether (VE), respectively) followed by the chemical modification of the polystyrene grafts are presented. First, the fluorinated alternating copolymers were produced by radical copolymerization of CTFE (with HFP) and VE. Second, atom transfer radical polymerization enabled the grafting polymerization of styrene in the presence of the poly(CTFE‐alt‐VE)‐macroinitiator using the alkyl chloride group of CTFE as the initiation site. Kinetics of the styrene polymerization indicated that such a grafting had a certain controlled character. For the first time, grafting of polystyrene onto alternating fluorinated copolymers has been achieved. Differential scanning calorimetry thermograms of these graft copolymers exhibited two glass transition temperatures assigned to both amorphous domains of the polymeric fluorobackbone (ranging from ?20 to +56 °C) and the polystyrene grafts (ca. 95 °C). The thermostability of these copolymers increased on grafting. Thermal degradation temperatures at 5% weight loss were ranging from 193 to 305 °C when the polystyrene content varied from 81 to 27%. Third, chloromethylation of the polystyrene grafts followed by the cationization of the chloromethyl dangling groups led to original ammonium‐containing graft copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

12.
Graft copolymers comprising poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) backbone and poly(styrene sulfonic acid) side chains, i.e. P(VDF‐co‐CTFE)‐g‐PSSA were synthesized using atom transfer radical polymerization (ATRP) for composite nanofiltration (NF) membranes. Direct initiation of the secondary chlorinated site of CTFE units facilitates grafting of PSSA, as revealed by FT‐IR spectroscopy. The successful “grafting from” method and the microphase‐separated structure of the graft copolymer were confirmed by transmission electron microscopy (TEM). Wide angle X‐ray scattering (WAXS) also showed the decrease in the crystallinity of P(VDF‐co‐CTFE) upon graft copolymerization. Composite NF membranes were prepared from P(VDF‐co‐CTFE)‐g‐PSSA as a top layer coated onto P(VDF‐co‐CTFE) ultrafiltration support membrane. Both the rejections and the flux of composite membranes increased with increasing PSSA concentration due to the increase in SO3H groups and membrane hydrophilicity, as supported by contact angle measurement. The rejections of NF membranes containing 47 wt% of PSSA were 83% for Na2SO4 and 28% for NaCl, and the solution flux were 18 and 32 L/m2 hr, respectively, at 0.3 MPa pressure. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
A series of amphiphilic graft copolymers of poly (vinylidene fluoride‐co‐chlorotrifluoroethylene)‐g‐poly(2‐vinyl pyridine), P (VDF‐co‐CTFE)‐g‐P2VP, with different degrees of P2VP grafting (from 26.3 to 45.6 wt%) was synthesized via one‐pot atom transfer radical polymerization (ATRP). The amphiphilic properties of P (VDF‐co‐CTFE)‐g‐P2VP graft copolymers allowed itself to self‐assemble into nanoscale structures. P (VDF‐co‐CTFE)‐g‐P2VP graft copolymers were introduced into neat P (VDF‐co‐CTFE) as additives to form blending membranes. When two different solvents, N‐methyl‐2‐pyrrolidone (NMP) and dimethylformamide (DMF), were used, specific organized crystalline structures were observed only in the NMP systems. P (VDF‐co‐CTFE)‐g‐P2VP played a pivotal role in controlling the morphology and pore structure of membranes. The water flux of the membranes increased from 57.2 to 310.1 L m?2 h?1 bar?1 with an increase in the PVDF‐co‐CTFE‐g‐P2VP loading (from 0 to 30 wt%) due to increased porosity and hydrophilicity. The flux recovery ratio (FRR) increased from 67.03% to 87.18%, and the irreversible fouling (Rir) decreased from 32.97% to 12.82%. Moreover, the pure gas permeance of the membranes with respect to N2 was as high as 6.2 × 104 GPU (1 GPU = 10–6 cm3[STP]/[s cm2 cmHg]), indicating their possible use as a porous polymer support for gas separation applications.  相似文献   

14.
In this study, poly(vinylidene fluoride‐co‐chlorotrifluoroethylene)‐graft‐poly(oxyethylene methacrylate), P(VDF‐co‐CTFE)‐g‐POEM, an amphiphilic comb copolymer with hydrophobic P(VDF‐co‐CTFE) backbone and hydrophilic POEM side chains at 73:27 wt % was synthesized. The POEM side chains were grafted from the P(VDF‐co‐CTFE) mainchain backbone via atom transfer radical polymerization (ATRP) using direct initiation of the chlorine atoms in CTFE units. Synthesis of microphase‐separated P(VDF‐co‐CTFE)‐g‐POEM comb copolymer was successful, as confirmed by nuclear magnetic resonance (1H NMR), FTIR spectroscopy, and transmission electron microscopy (TEM). Nanocomposite films were prepared using the comb copolymer as a template film and the in situ reduction of AgCF3SO3 precursor to silver nanoparticles under UV irradiation. Silver nanoparticles with 4–8 nm in average size were in situ created in the solid state template film, as revealed by TEM, UV–visible spectroscopy, and wide angle X‐ray scattering (WAXS). Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) presented the selective incorporation and the in situ growth of silver nanoparticles within the hydrophilic POEM domains of microphase‐separated comb copolymer film. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 702–709, 2008  相似文献   

15.
The grafting of poly(VDF‐co‐HFP) copolymers with different amines containing aromatic rings, such as aniline, benzylamine, and phenylpropylamine, is presented. 19F NMR characterization enabled us to show that the sites of grafting of aromatic‐containing amines were first difluoromethylene of vinylidene fluoride (VDF) in the hexafluoropropene (HFP)/VDF/HFP triad and then that of VDF adjacent to HFP. The kinetics of grafting of benzylamine, monitored by 1H NMR spectroscopy, confirmed those sites of grafting and showed that all VDF units located between two HFPs were grafted in the first 150 min, whereas those adjacent to one HFP unit were grafted in the remaining 3000 min. Parameters such as the temperature or the molar percentage of HFP in the copolymer had an influence on the maximum rate of grafted benzylamine. The higher the temperature, the higher the molar percentage of grafted benzylamine. Furthermore, the higher the molar percentage of HFP in the copolymer, the higher the molar percentage of VDF in the HFP/VDF/HFP triad, and the higher the molar percentage of grafted benzylamine. The spacer length between the aromatic ring and the amino group had an influence on the kinetics of grafting: aniline (pKa = 4.5) could not add onto the polymeric backbone, whereas phenylpropylamine was grafted in the first 150 min, and benzylamine required 3000 min to reach the maximum amount of grafting. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1855–1868, 2006  相似文献   

16.
Novel thermo-responsive hydrophilic microspheres were prepared by free radical polymerization of methacrylate bovine serum albumin and N-isopropylacrylamide, as cross-linker and functional monomer, respectively. The incorporation of monomers in the network was confirmed by infrared spectroscopy, while the network density and shape of hydrogels strictly depend on concentration of monomers in the polymerization feed. The thermal analyses showed negative thermo-responsive behavior with pronounced water affinity of microspheres at temperature lower than lower critical solution temperature (LCST). The in vitro release studies of drug-loaded thermo-sensitive hydrogels were performed. Experimental data showed, for the copolymers with functional monomer/cross-linker ratio ≤ 1, a predominant drug release in the collapsed state, while the copolymers with functional monomer/cross-linker ratio > 1 showed prominent drug release in the swollen state. Below the hydrogel LCST, drug release through the swollen polymeric networks was observed, while a squeezing-out effect at temperature above the LCST was predominant.  相似文献   

17.
PFPE‐b‐PVDF and PFPE‐b‐poly(VDF‐co‐HFP) block copolymers [where PFPE, PVDF, VDF, and HFP represent perfluoropolyether, poly(vinylidene fluoride), vinylidene fluoride (or 1,1‐difluoroethylene), and hexafluoropropylene] were synthesized by radical (co)telomerizations of VDF (or VDF and HFP) with an iodine‐terminated perfluoropolyether (PFPE‐I). Di‐tert‐butyl peroxide (DTBP) was used and was shown to act as an efficient thermal initiator. The numbers of VDF and VDF/HFP base units in the block copolymers were assessed with 19F NMR spectroscopy. According to the initial [PFPE‐I]0/[fluoroalkenes]0 and [DTBP]0/[fluoroalkenes]0 molar ratios, fluorinated block copolymers of various molecular weights (1500–30,300) were obtained. The states and thermal properties of these fluorocopolymers were investigated. The compounds containing PVDF blocks with more than 30 VDF units were crystalline, whereas all those containing poly(VDF‐co‐HFP) blocks exhibited amorphous states, whatever the numbers were of the fluorinated base units. All the samples showed negative glass‐transition temperatures higher than that of the starting PFPE. Interestingly, these PFPE‐b‐PVDF and PFPE‐b‐poly(VDF‐co‐HFP) block copolymers exhibited good thermostability. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 160–171, 2003  相似文献   

18.
A series of 2,6‐bis(imino)pyridines, as common ligands for late transition metal catalyst in ethylene coordination polymerization, were successfully employed in single‐electron transfer‐living radical polymerization (SET‐LRP) of methyl methacrylate (MMA) by using poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) (P(VDF‐co‐CTFE)) as macroinitiator with low concentration of copper catalyst under relative mild‐reaction conditions. Well‐controlled polymerization features were observed under varied reaction conditions including reaction temperature, catalyst concentration, as well as monomer amount in feed. The typical side reactions including the chain‐transfer reaction and dehydrochlorination reaction happened on P(VDF‐co‐CTFE) in atom‐transfer radical polymerization process were avoided in current system. The relationship between the catalytic activity and the chemical structure of 2,6‐bis(imino)pyridine ligands was investigated by comparing both the electrochemical properties of Cu(II)/2,6‐bis(imino)pyridine and the kinetic results of SET‐LRP of MMA catalyzed with different ligands. The substitute groups onto N‐binding sites with proper steric bulk and electron donating are desirable for both high‐propagation reaction rate and C? Cl bonds activation capability on P(VDF‐co‐CTFE). The catalytic activity of Cu(0)/2,6‐bis(imino)pyridines is comparable with Cu(0)/2,2′‐bipyridine under the consistent reaction conditions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4378–4388  相似文献   

19.
This study aims at determining the compatibility behavior of nanoparticles surface with fluorinated matrices to obtain a homogenous dispersion and better composites properties. First, modified silica nanoparticles by C6F13I and C6F13‐C2H4‐SH led to various fluorinated silica of different massic concentrations and grafting rates. The dispersion of these nanoparticles (in 5 wt %) into molten poly(VDF‐co‐HFP) and poly(TFE‐co‐HFP) matrices were studied as well as the hydrophobic, mechanical, and thermal properties of both fluorinated copolymers and resulting composites. In both series, the storage modulus of nanocomposites increased while the melting (Tm) and decomposition (T10%) temperatures varied with the polymer matrix. They increased for poly(VDF‐co‐HFP) composites (Tm= 134 to 144 °C and T10%= 441 to 464 °C) but decreased for poly(TFE‐co‐HFP) nanocomposites (Tm= 276 to 268 °C and T10%= 488 to 477 °C). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1512–1522  相似文献   

20.
Fluorinated acrylates and methacrylates radiolyzed at 77 K polymerize upon heating in the range from the glass-transition to the melting temperature. In the case of acrylates, the temperature range of postradiation polymerization increases by more than 100 K with the increasing chain length of the perfluorinated substituent from C2F4 to C8F17. The introduction of perfluorinated substituents into methacrylate molecules makes it possible to obtain them in the glassy state and to carry out low-temperature postradiation polymerization, in contrast to their hydrocarbon analogues. The termination rate constant of the polymerization of fluorinated methacrylates has a lower value as compared to conventional methacrylates. The formation of crosslinked structures is suppressed during the copolymerization of fluorinated acrylates with methacrylates. The ESR spectra of growing polymer radicals of fluorinated acrylic ∼CH2C·H(COOCH2C6F13)∼ and methacrylic CH2C·(CH3)(COOCH2C2F4H)∼ monomers have been identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号