共查询到20条相似文献,搜索用时 0 毫秒
1.
Within an oligonucleotide duplex, excess electron transfer from a excited 5-(pyren-1-yl)uridine through an internal stacked phenanthrenyl pair to 5-bromouridine as an electron acceptor was observed. 相似文献
2.
Gu J Wong NB Xie Y Schaefer FH 《Chemistry (Weinheim an der Bergstrasse, Germany)》2010,16(44):13155-13162
The minimal essential section of DNA helices, the dinucleoside phosphate deoxyguanylyl-3',5'-deoxycytidine dimer octahydrate, [dGpdC](2), has been constructed, fully optimized, and analyzed by using quantum chemical methods at the B3LYP/6-31+G(d,p) level of theory. Study of the electrons attached to [dGpdC](2) reveals that DNA double strands are capable of capturing low-energy electrons and forming electronically stable radical anions. The relatively large vertical electron affinity (VEA) predicted for [dGpdC](2) (0.38 eV) indicates that the cytosine bases are good electron captors in DNA double strands. The structure, charge distribution, and molecular orbital analysis for the fully optimized radical anion [dGpdC](2)(·-) suggest that the extra electron tends to be redistributed to one of the cytosine base moieties, in an electronically stable structure (with adiabatic electron affinity (AEA) 1.14 eV and vertical detachment energy (VDE) 2.20 eV). The structural features of the optimized radical anion [dGpdC](2)(·-) also suggest the probability of interstrand proton transfer. The interstrand proton transfer leads to a distonic radical anion [d(G-H)pdC:d(C+H)pdG](·-), which contains one deprotonated guanine anion and one protonated cytosine radical. This distonic radical anion is predicted to be more stable than [dGpdC](2)(·-). Therefore, experimental evidence for electron attachment to the DNA double helices should be related to [d(G-H)pdC:d(C+H)pdG](·-) complexes, for which the VDE might be as high as 2.7 eV (in dry conditions) to 3.3 eV (in fully hydrated conditions). Effects of the polarizable medium have been found to be important for increasing the electron capture ability of the dGpdC dimer. The ultimate AEA value for cytosine in DNA duplexes is predicted to be 2.03 eV in aqueous solution. 相似文献
3.
The excited-state proton transfer and subsequent intramolecular ion pair formation of a cupreidine-derived Cinchona organocatalyst () were studied in THF-water mixtures using picosecond time-resolved fluorescence together with global analysis. Full spectral and kinetic characterization of all the fluorescent species allowed us to monitor the 3-step process for the ion pair dissociation. In the first step, proton transfer occurs through a water "wire" from the 6-hydroxyquinoline unit (excited-state acid) to the covalently bonded basic quinuclidine moiety, resulting in a hydrogen bonded ion pair. This was confirmed by the observed kinetic isotope effect in the presence of heavy water. In the second step, the formed ions are further solvated by a few solvent molecules, producing the solvent separated ion pair. Finally, a fully solvated ion pair is formed. The 5-exponential global model derived from the reaction scheme describes the experimental data very well. 相似文献
4.
K. K. Kalnin’sh 《Russian Journal of Applied Chemistry》2007,80(6):934-940
The role of electron and proton transfer in acid-base catalysis is discussed, with two reactions as examples, in one of which (polymerization of cyclobutenes) an acid, and in another (nitramide decomposition), a base acts as the catalyst. 相似文献
5.
Song L Wellman AD Yao H Bartmess JE 《Journal of the American Society for Mass Spectrometry》2007,18(10):1789-1798
To better guide the development of liquid chromatography/electron capture-atmospheric pressure photoionization-mass spectrometry (LC/EC-APPI-MS) in analysis of low polarity compounds, the ionization mechanism of 19 compounds was studied using dopant assisted negative ion-APPI. Four ionization mechanisms, i.e., EC, dissociative EC, proton transfer, and anion attachment, were identified as being responsible for the ionization of the studied compounds. The mechanisms were found to sometimes compete with each other, resulting in multiple ionization products from the same molecule. However, dissociative EC and proton transfer could also combine to generate the same [M - H](-) ions. Experimental evidence suggests that O(2)(-*), which was directly observed in the APPI source, plays a key role in the formation of [M - H](-) ions by way of proton transfer. Introduction of anions more basic than O(2)(-*), i.e., C(6)H(5)CH(2)(-), into the APPI source, via addition of di-tert-butyl peroxide in the solvent and/or dopant, i.e., toluene, enhanced the deprotonation ability of negative ion-APPI. Although the use of halogenated solvents could hinder efficient EC, dissociative EC, and proton transfer of negative ion-APPI due to their EC ability, the subsequently generated halide anions promoted halide attachment to compounds that otherwise could not be efficiently ionized. With the four available ionization mechanisms, it becomes obvious that negative ion-APPI is capable of ionizing a wider range of compounds than negative ion chemical ionization (NICI), negative ion-atmospheric pressure chemical ionization (negative ion-APCI) or negative ion-electrospray ionization (negative ion-ESI). 相似文献
6.
Hodgkiss JM Damrauer NH Pressé S Rosenthal J Nocera DG 《The journal of physical chemistry. B》2006,110(38):18853-18858
The temperature-isotope dependence of proton-coupled electron transfer (PCET) for a noncovalent molecular dyad is reported. The system consists of an excited-state Zn(II) porphyrin that transfers an electron to a naphthalene diimide acceptor through an amidinium-carboxylate interface. Two different isotope effects are observed for variant temperature regimes. A reverse isotope effect (i.e., kH/kD < 1) is observed as T approaches 120 K (kH/kD = 0.9, 120 K), whereas a normal isotope effect (i.e., kH/kD > 1) is recovered as the temperature is increased (kH/kD = 1.2, 300 K). The transition between these limits is smooth, with a crossover temperature of T approximately 160 K. These observations are in accordance with charge-transfer dynamics that are susceptible to bath-induced fluctuations in the proton coordinate. 相似文献
7.
Caricato M Ingrosso F Mennucci B Sato H 《The journal of physical chemistry. B》2006,110(49):25115-25121
Results are presented for an investigation of intermolecular electron transfer (ET) in solution by means of quantum calculations. The two molecules that are involved in the ET reaction form a solvent-separated radical ion pair. The solvent plays an important role in the ET between the two molecules. In particular, it can give rise to specific solute-solvent interactions with the solutes. An example of specific interactions is the formation of a hydrogen bond between a protic solvent and one of the molecules involved in the ET. We address the study of this system by means of quantum calculations on the solutes immersed in a continuum solvent. However, when the solvent can give rise to hydrogen bond formation with the negatively charged ion after ET, we explicitly consider solvent molecules in the solute cavity, determining the hydrogen bond energetic contribution to the overall interaction energy. Solute-solvent pair distribution functions, showing the different arrangement of solvent molecules before and after ET in the first solvation shell, are reported. We provide results of the solvent reorganization energy from quantum calculations for both the two isolated fragments and the ion pair in solution. Results are in agreement with available experimental data. 相似文献
8.
9.
Dabkowska I Rak J Gutowski M Nilles JM Stokes ST Bowen KH 《The Journal of chemical physics》2004,120(13):6064-6071
The photoelectron spectrum of the uracil-alanine anionic complex (UA)(-) has been recorded with 2.540 eV photons. This spectrum reveals a broad feature with a maximum between 1.6 and 2.1 eV. The vertical electron detachment energy is too large to be attributed to an (UA)(-) anionic complex in which an intact uracil anion is solvated by alanine, or vice versa. The neutral and anionic complexes of uracil and alanine were studied at the B3LYP and second-order M?ller-Plesset level of theory with 6-31++G(*) (*) basis sets. The neutral complexes form cyclic hydrogen bonds and the three most stable neutral complexes are bound by 0.72, 0.61, and 0.57 eV. The electron hole in complexes of uracil with alanine is localized on uracil, but the formation of a complex with alanine strongly modulates the vertical ionization energy of uracil. The theoretical results indicate that the excess electron in (UA)(-) occupies a pi(*) orbital localized on uracil. The excess electron attachment to the complex can induce a barrier-free proton transfer (BFPT) from the carboxylic group of alanine to the O8 atom of uracil. As a result, the four most stable structures of the uracil-alanine anionic complex can be characterized as a neutral radical of hydrogenated uracil solvated by a deprotonated alanine. Our current results for the anionic complex of uracil with alanine are similar to our previous results for the anion of uracil with glycine, and together they indicate that the BFPT process is not very sensitive to the nature of the amino acid's hydrophobic residual group. The BFPT to the O8 atom of uracil may be relevant to the damage suffered by nucleic acid bases due to exposure to low energy electrons. 相似文献
10.
The energetics and dynamics of double proton transfer (DPT) is investigated theoretically for the Watson-Crick conformation of the guanine-cytosine (GC) base pair. Using semiempirical density functional theory the isolated and DNA-embedded GC pair is considered. Differences in the energetics and dynamics of DPT thus addresses the question of how relevant studies of isolated base pairs are for the understanding of processes occurring in DNA. Two-dimensional potential energy surfaces involving the transferring hydrogen atoms and the proton donors and acceptors are presented for both systems. The DPT reaction is accompanied by a contraction of the distance between the two bases with virtually identical energetic barriers being 18.8 and 18.7 kcal/mol for the isolated and DNA-embedded system, respectively. However, the transition state for DPT in the DNA-embedded GC pair is offset by 0.1 A to larger N-H separation compared to the isolated GC pair. Using activated ab initio molecular dynamics, DPT is readily observed for the isolated base pair with a minimal amount of 21.4 kcal/mol of initial average kinetic energy along the DPT normal mode vector. On a time scale of approximately 100 fs DPT has occurred and the excess energy is redistributed. For the DNA-embedded GC pair considerably more kinetic energy is required (30.0 kcal/mol) for DPT and the process is completed within one hydrogen vibration. The relevance of studies of isolated base pairs and base pair analogs in regard of reactions or properties involving DNA is discussed. 相似文献
11.
12.
Achintya Kumar Dutta Turbasu Sengupta Nayana Vaval Sourav Pal 《International journal of quantum chemistry》2015,115(12):753-764
We report a benchmark theoretical investigation of both vertical and adiabatic electron affinities of DNA and RNA nucleobases: adenine, guanine, cytosine, thymine, and uracil using equation of motion coupled cluster method. The vertical electron affinity (VEA) values of the first five states of the DNA and RNA nucleobases are computed. It is observed that the first electron attached state is energetically accessible in gas phase. Furthermore, an analysis of the natural orbitals exhibits that the first electron attached states of uracil and thymine are valence‐bound in nature and undergo significant structural changes on attachment of an extra electron, which reflects in the deviation of the adiabatic electron affinity (AEA) than that of the vertical ones. Conversely, the first electron attached states of cytosine, adenine, and guanine are in the category of dipole‐bound anions. Their structure, by and large, remain unaffected on attachment of an extra electron, which is evident from the observed small difference between the AEA and VEA values. VEA and AEA values of all the DNA and RNA nucleobases are found to be negative, which implies that the first electron attached states are not stable rather quasi bound. The results of all previous theoretical calculations are out of track and shows large deviation with respect to the experimentally measured values, whereas, our results are found to be in good agreement. Therefore, our computed values can be used as a reliable standard to calibrate new theoretical methods. © 2015 Wiley Periodicals, Inc. 相似文献
13.
Several 2- and 4-alkylcyclohexadienones were prepared and shown to accept electrons to produce ketyl radical anions that dissociated rapidly at room temperature to release carbon-centered radicals and an aromatic phenoxide type anion. In the PET process with benzyl-substituted cyclohexadienones, initiated with triethylamine, the benzyl radicals dimerised or abstracted an H-atom from solvent. In electrochemical reductions, and in reductions with alkali metals in liquid ammonia, the benzyl radicals were further reduced to anions. 相似文献
14.
Gunawardena HP He M Chrisman PA Pitteri SJ Hogan JM Hodges BD McLuckey SA 《Journal of the American Chemical Society》2005,127(36):12627-12639
The ion/ion reactions of several dozen reagent anions with triply protonated cations of the model peptide KGAILKGAILR have been examined to evaluate predictions of a Landau-Zener-based model for the likelihood for electron transfer. Evidence for electron transfer was provided by the appearance of fragment ions unique to electron transfer or electron capture dissociation. Proton transfer and electron transfer are competitive processes for any combination of anionic and cationic reactants. For reagent anions in reactions with protonated peptides, proton transfer is usually significantly more exothermic than electron transfer. If charge transfer occurs at relatively long distances, electron transfer should, therefore, be favored on kinetic grounds because the reactant and product channels cross at greater distances, provided conditions are favorable for electron transfer at the crossing point. The results are consistent with a model based on Landau-Zener theory that indicates both thermodynamic and geometric criteria apply for electron transfer involving polyatomic anions. Both the model and the data suggest that electron affinities associated with the anionic reagents greater than about 60-70 kcal/mol minimize the likelihood that electron transfer will be observed. Provided the electron affinity is not too high, the Franck-Condon factors associated with the anion and its corresponding neutral must not be too low. When one or the other of these criteria is not met, proton transfer tends to occur essentially exclusively. Experiments involving ion/ion attachment products also suggest that a significant barrier exists to the isomerization between chemical complexes that, if formed, lead to either proton transfer or electron transfer. 相似文献
15.
Double proton transfer (PT) reactions in guanine-cytosine OH radical adducts are studied by the hybrid density functional B3LYP approach. Concerted and stepwise proton-transfer processes are explored between N1(H) on guanine (G) and N3 on cytosine (C), and between N4(H) on C and O6 on G. All systems except GC6OH display a concerted mechanism. 8OHGC has the highest dissociation energy and is 1.2 kcal/mol more stable than the nonradical GC base pair. The origin of the interactions are investigated through the estimation of intrinsic acid-basic properties of the *OH-X monomer (X = G or C). Solvent effects play a significant role in reducing the dissociation energy. The reactions including *OH-C adducts have significantly lower PT barriers than both the nonradical GC pair and the *OH-G adducts. All reactions are endothermic, with the GC6OH --> GC6OHPT reaction has the lowest reaction energy (4.6 kcal/mol). In accordance with earlier results, the estimated NBO charges show that the G moiety carries a slight negative charge (and C a corresponding positive one) in each adduct. The formation of a partial ion pair may be a potential factor leading to the PT reactions being thermodynamically unfavored. 相似文献
16.
A homologous series of DNA-modified electrodes has been investigated in which the molecular tether length varies. Using intercalated, covalently bound daunomycin as a redox probe, an exponential dependence of electron transfer rates on the number of intervening methylene groups in the sigma-bonded tether is observed. In contrast, variation in DM position within DNA yields no detectable change in rate. These data confirm that overall electron transfer rates in DNA films are limited by the tether, not the DNA. 相似文献
17.
Electron transfer processes in DNA: mechanisms, biological relevance and applications in DNA analytics 总被引:1,自引:0,他引:1
Wagenknecht HA 《Natural product reports》2006,23(6):973-1006
In principle, DNA-mediated charge transfer processes can be categorized as oxidative hole transfer and reductive electron transfer. With respect to the routes of DNA damage most of the past research has been focused on the investigation of oxidative hole transfer or transport. On the other hand, the transport or transfer of excess electrons has a large potential for biomedical applications, mainly for DNA chip technology. 相似文献
18.
Fabrikant II Caprasecca S Gallup GA Gorfinkiel JD 《The Journal of chemical physics》2012,136(18):184301
Low-energy dissociative electron attachment (DEA) to the CF(2)Cl(2) and CF(3)Cl molecules in a water cluster environment is investigated theoretically. Calculations are performed for the water trimer and water hexamer. It is shown that the DEA cross section is strongly enhanced when the attaching molecule is embedded in a water cluster, and that this cross section grows as the number of water molecules in the cluster increases. This growth is explained by a trapping effect that is due to multiple scattering by water molecules while the electron is trapped in the cluster environment. The trapping increases the resonance lifetime and the negative ion survival probability. This confirms qualitatively existing experiments on electron attachment to the CF(2)Cl(2) molecule placed on the surface of H(2)O ice. The DEA cross sections are shown to be very sensitive to the position of the attaching molecule within the cluster and the orientation of the electron beam relative to the cluster. 相似文献
19.
Voityuk AA 《The Journal of chemical physics》2005,122(20):204904
We include solvation effects in tight-binding Hamiltonians for hole states in DNA. The corresponding linear-response parameters are derived from accurate estimates of solvation energy calculated for several hole charge distributions in DNA stacks. Two models are considered: (A) the correction to a diagonal Hamiltonian matrix element depends only on the charge localized on the corresponding site and (B) in addition to this term, the reaction field due to adjacent base pairs is accounted for. We show that both schemes give very similar results. The effects of the polar medium on the hole distribution in DNA are studied. We conclude that the effects of polar surroundings essentially suppress charge delocalization in DNA, and hole states in (GC)(n) sequences are localized on individual guanines. 相似文献
20.
The geometries of the DNA nucleoside pairs between 2'-deoxyriboadenosine (dA) and 2'-deoxyribothymidine (dT) and its anion (dAdT-) were fully optimized using carefully calibrated density functional methods. The addition of an electron to dAdT results in remarkable changes to the two hydrogen bonding distances, the H...O distance decreasing by 0.303 angstroms and the N...H distance increasing by 0.229 angstroms. The electron affinity of the dAdT pair was studied to reveal the correct trends of adiabatic electron affinity (EA(ad)) under the influence of the additional components to the individual bases. The consequence of negative charge in terms of structural variations, energetic changes, and charge distribution were explored. The EA(ad) of dAdT is predicted to be positive (0.60 eV), and it exhibits a substantial increase compared with those of the corresponding bases A and T and the nucleic acid base pair AT. The effects of pairing and the addition of the sugar moiety on the EA(ad) are well described as the summation of the individual influences. The influence of the pairing on the EA is comparable to that of the addition of 2-deoxyribose. The excess charge is mainly located on the thyminyl moiety in the anionic dAdT pair. The positive vertical electron affinity (VEA = 0.20 eV) for dAdT suggests that it is able to form a stable anion through electron attachment. A large vertical detachment energy (VDE = 1.14 eV) has been determined for the anionic dAdT nucleoside pair. Therefore, one may expect that the stable anionic dAdT nucleoside pair should be able to undergo the subsequent glycosidic bond cleavage process. 相似文献