首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure and surface energies of the cleaved, reconstructed, and fully hydroxylated (001) alpha-quartz surface of various thicknesses are investigated with periodic density functional theory (DFT). The properties of the cleaved and hydroxylated surface are reproduced with a slab thickness of 18 atomic layers, while a thicker 27-layer slab is necessary for the reconstructed surface. The performance of the hybrid DFT functional B3LYP, using an atomic basis set, is compared with the generalised gradient approximation, PBE, employing plane waves. Both methodologies give similar structures and surface energies for the cleaved and reconstructed surfaces, which validates studying these surfaces with hybrid DFT. However, there is a slight difference between the PBE and B3LYP approach for the geometry of the hydrogen bonded network on the hydroxylated surface. The PBE adsorption energy of CO on a surface silanol site is in good agreement with experimental values, suggesting that this method is more accurate for hydrogen bonded structures than B3LYP. New hybrid functionals, however, yield improved weak interactions. Since these functionals also give superior activation energies, we recommend applying the new functionals to contemporary issues involving the silica surface and adsorbates on this surface.  相似文献   

2.
The effects of the Fock exchange on the geometries and electronic structures of TiO2 have been investigated by introducing a portion of Hartree-Fock (HF) exchange into the traditional density functional. Our results indicate that the functional with 13% HF exchange can correctly predict the band gap and the electronic structures of rutile TiO2, and such an approach is also suitable to describe the structural and electronic properties of anatase and brookite phases. For the TiO2 (110) surfaces, although the surface relaxations are insensitive to the variation of HF exchange, there are larger effects on the positions of the occupied surface-induced states. When 13% HF exchange is employed, the predicted band gap of the perfect surface and position of defect state of the reduced surface are consistent with the experimental values. Moreover, the electronic structures of TiO2 (110) surface are carefully reexamined by using this hybrid density functional method.  相似文献   

3.
Graphene自组装超分子结构,是指FTBC-Cn(n=4,6,8,12)分子有序自组装在高定向裂解石墨(HOPG)上形成的自组装超分子结构,是一种新型二维固体表面材料.其中FTBC-Cn分子是由三角形扶手椅型graphene每边添加2条含有n(n=4,6,8,12)个C原子的烷基链所形成具有曲面结构的一种分子.采用...  相似文献   

4.
The frontier molecular orbitals (HOMO and NHOMO) of CF2BrCl molecule have been firstly investigated by (e,2e) electron momentum spectroscopy. The experimental momentum profiles are compared with the theoretical profiles employing Hartree-Fock and density functional theory with 6-31G and 6-311+G(d) basis sets. Both HF and DFT calculations using 6-311+G(d) basis set can well describe the experiment, whereas those calculated using 6-31G basis set largely underestimate the experiment at the low momentum region. Furthermore, orbital electron density images show that HOMO and NHOMO have a mixed character of the bromine and chlorine lone pairs.  相似文献   

5.
Surface structures of rutile TiO(2) (011) are determined by a combination of noncontact atomic force microscopy (NC-AFM), scanning tunneling microscopy (STM), and density functional calculations. The surface exhibits rowlike (n x 1) structures running along the [01] direction. Microfaceting missing-row structural models can explain the experimental results very well. Calculated images for NC-AFM and STM are in good agreement with the experimental results. A decrease of the density of dangling bonds stabilizes the surface energy, which results in the microfaceting missing-row reconstructions.  相似文献   

6.
Extremely localized molecular orbitals are rigorously localized on only a preselected set of atoms and do not have any tails outside the localization region. The importance of these orbitals lies in their ability to be transferred from one molecule to another one. A new algorithm to determine extremely localized molecular orbitals in the framework of the density functional theory method is presented. This could also be a valuable tool in the quantum mechanics/molecular mechanics methodology where localized molecular orbitals are used to describe covalent bonds across the frontier region. The present approach is used to build up the electron density of thymopentin, a polypeptide constituted by five residues, starting from extremely localized molecular orbitals determined on a set of model molecules. The results obtained confirm good transferability properties for these orbitals.Proceedings of the 11th International Congress of Quantum Chemistry satellite meeting in honor of Jean-Louis Rivail  相似文献   

7.
Ten stationary points on the water dimer potential energy surface have been examined with ten density functional methods (X3LYP, B3LYP, B971, B98, MPWLYP, PBE1PBE, PBE, MPW1K, B3P86, and BHandHLYP). Geometry optimizations and vibrational frequency calculations were carried out with the TZ2P(f,d)+dif basis set. All ten of the density functionals correctly describe the relative energies of the ten stationary points. However, correctly describing the curvature of the potential energy surface is far more difficult. Only one functional (BHandHLYP) reproduces the number of imaginary frequencies from CCSD(T) calculations. The other nine density functionals fail to correctly characterize the nature of at least one of the ten (H(2)O)(2) stationary points studied here.  相似文献   

8.
We analyze the pentacene/Au(111) interface by means of density functional theory (DFT) calculations using a new hybrid functional; in our approach we introduce, in a local-orbital formulation of DFT, a hybrid exchange potential, and combine it with a calculation of the molecule charging energy to properly describe the transport energy gap of pentacene on Au(111). Van der Waals forces are taken into account to obtain the adsorption geometry. Interface dipole potentials are also calculated; it is shown that the metal/pentacene energy level alignment is determined by the potential induced by the charge transfer between the metal surface and the organic material, as described by the induced density of interface states model. Our results compare well with the experimental data.  相似文献   

9.
10.
Recent combined experimental and theoretical studies (Beck et al., Phys. Rev. Lett. 2004, 93, 036104) have provided evidence for Ti=O double-bonded titanyl groups on the reconstructed rutile TiO(2)(011)-(2 x 1) surface. The adsorption of water on the same surface is now investigated to further probe the properties of these groups, as well as to confirm their existence. Ultraviolet photoemission experiments show that water is adsorbed in molecular form at a sample temperature of 110 K. At the same time, the presence of a 3sigma state in the photoemission spectra and work function measurements indicate a significant amount of hydroxyls within the first monolayer of water. At room temperature, scanning tunneling microscopy (STM) suggests that dissociated water is present, and about 30% of the surface active sites are hydroxylated. These findings are well explained by total energy density functional theory calculations and Car-Parrinello molecular dynamics simulations for water adsorption on the titanyl model of TiO(2)(011)-(2 x 1). The theoretical results show that a mixed molecular/dissociative layer is the most stable configuration in the monolayer regime at low temperatures, while complete dissociation takes place at 250 K. The arrangement of the protonated mono-coordinated oxygens in the mixed molecular/dissociated layer is consistent with the observed short-range order of the hydroxyls in the STM images.  相似文献   

11.
In the framework of density functional theory, the adsorption of the halogenated polycyclic aromatic hydrocarbon 2,11‐diiodohexabenzocoronene (HBC‐I2) on the SiC(0001) 3×3 surface has been investigated. Nondissociative and dissociative molecular adsorption is considered, and simulated scanning tunneling microscopy (STM) images are compared with the corresponding experimental observations. Calculations show that dissociative adsorption is favorable and reveal the crucial importance of the extended flat carbon core on molecule–surface interactions in dissociative adsorption; the iodine atom–surface interaction is of minor importance. Indeed, removing iodine atoms does not significantly affect the STM images of the central part of the molecule. This study shows that the dissociation of large halogenated polycyclic aromatic hydrocarbon molecules can occur on the SiC surface. This opens up interesting perspectives in the chemical reactivity and functionalization of wide band gap semiconductors.  相似文献   

12.
 Density functional theory, in combination with a) a careful choice of the exchange-correlation part of the total energy and b) localized basis sets for the electronic orbitals, has become the method of choice for calculating the exchange-couplings in magnetic molecular complexes. Orbital expansion on plane waves can be seen as an alternative basis set especially suited to allow optimization of newly synthesized materials of unknown geometries. However, little is known on the predictive power of this scheme to yield quantitative values for exchange coupling constants J as small as a few hundredths of eV (50–300 cm−1). We have used density functional theory and a plane waves basis set to calculate the exchange couplings J of three homodinuclear Cu-based molecular complexes with experimental values ranging from +40 cm−1 to −300 cm−1. The plane waves basis set proves as accurate as the localized basis set, thereby suggesting that this approach can be reliably employed to predict and rationalize the magnetic properties of molecular-based materials. Corresponding author. E-mail: Carlo.Massobrio@ipcms.u-strasbg.fr Received August 5, 2002; accepted August 9, 2002  相似文献   

13.
First-principles calculations within the density functional theory (DFT) framework have been performed in order to investigate various conformations of the 2,5-pyridine di-carboxylic acid (PDCA) molecule adsorbed onto the Cu(011) surface. By means of DFT calculations the adsorption geometry, the bond formation and the electronic properties of PDCA molecule conformations on the Cu(011) surface have been studied. The most important structural property is the orientation of the COOH H atom which can point either toward the aromatic ring or toward the vacuum. This H atom position determines the possible reactions in which the adsorbed molecule can get involved and also has a significant impact on the value of the Cu-molecule system work function. Thus, we find that simply by changing the H atom orientation (from up to down) the Cu-molecule system work function can be varied with more than 2.5 eV. This is a significant result as a lot of effort is put nowadays in finding efficient ways for the in situ variation of the systems work function. Scanning tunneling microscopy (STM) images, reflexion absorption infrared vibrational spectra (RAIRS) as well as various thermodynamic properties (adsorption entropies, enthalpies) have also been investigated in order to get a better insight into the system studied and to provide support to possible experimental studies (STM or RAIRS experiments).  相似文献   

14.
We compare computer simulations to experimental scanning tunneling microscopy (STM) images of chloronitrobenzene molecules on a Cu(111) surface. The experiments show that adsorption induced isomerization of the molecules takes place on the surface. Furthermore, not only the submolecular features can be seen in the STM images, but different isomers can also be recognized. The Todorov-Pendry approach to tunneling produces simulated STM images which are in good accordance with the experiments. Alongside with STM simulations in a tight-binding basis, ab initio calculations are performed in order to analyze the symmetry of relevant molecular orbitals and to consider the nature of tunneling channels. Our calculations show that while the orbitals delocalized to the phenyl ring create a relatively transparent tunneling channel, they also almost isolate the orbitals of the substitute groups at energies which are relevant in STM experiments. These features of the electronic structure are the key ingredients of the accurate submolecular observations.  相似文献   

15.
One- and two-photon circular dichroism spectra of R-(+)-3-methyl-cyclopentanone, a system that has been the subject of recent experimental studies of (2+1) resonance-enhanced multiphoton ionization circular dichroism, have been calculated with an origin-invariant density functional theory approximation in the region of the lowest electronic excited states, both for the gas phase and for a selection of solvents. A polarizable continuum model is used in the calculations performed on the solvated system. Two low-lying conformers are analyzed, and a comparison of the intensities and characteristic features is made with the corresponding two-photon absorption for each species, also for the Boltzmann-averaged spectra. The effect of the choice of geometry, basis set, and exchange-correlation functional is carefully analyzed. It is found that a density functional theory approach using the Coulomb attenuating method variant of Becke's three-parameter exchange and the Lee-Yang-Parr correlation functionals with correlation-consistent basis sets of double-zeta quality can reproduce the experimental electronic circular dichroism spectra very well. The features appearing in experiment are characterized in terms of molecular excitations, and the differences in the response of each state in the one- and two-photon processes are highlighted.  相似文献   

16.
Density functional theory based on hybrid functionals and localized atomic type basis sets is employed to calculate the exchange couplings in the layered three-dimensional compound Cu2(OH)3NO3. We assign accurate values to the six different in-plane exchange couplings. Interlayer exchange interactions through hydrogen bonds are also quantified. The calculated exchange coupling constants are then employed to perform quantum Monte Carlo simulations to yield magnetic susceptibility data, which compare successfully with experiments. Our approach sets the foundations of a viable methodology to extract reliable magnetic susceptibilities from density functional data.  相似文献   

17.
In three recent publications it was predicted that an Al(4)C molecule is planar on the basis of nonhybrid density functional calculations. These conclusions contradict our earlier predictions that Al(4)C is tetrahedral. In order to resolve the controversy we probed in this paper a potential energy surface of Al(4)C using a large variety of theoretical methods including multiconfigurational methods and a variety of one-electron basis sets. We confirmed that the nonhybrid Becke's exchange with Perdew-Wang 1991 correlation functional density functional method predicts that Al(4)C has a planar structure in agreement with the reports of the other three groups. However, in this paper we have shown that high level ab initio calculations at the coupled cluster with singles, doubles, and noniterative triples and at the complete active space self-consistent field followed by multireference configurational interaction levels of theory confirm our earlier prediction that Al(4)C is indeed tetrahedral. The failure of nonhybrid density functional methods to correctly characterize the global minimum structure of Al(4)C demonstrates that it is dangerous to rely solely on these density functional methods in characterization of new molecules and clusters, where experimental structure is not known.  相似文献   

18.
Scanning tunneling microscope (STM) images of 1,3-cyclohexadiene bound to silicon are interpreted using a nonequilibrium Green's function method. The resolution of the carbon-carbon double bond for positive bias voltages but not for negative bias voltages is explained using a quasiprobability density analysis. The asymmetry in the images arises from the system's voltage dependent electronic structure. A pi* orbital is found to be responsible for the empty state STM images of the carbon-carbon double bond, which is observed experimentally. The pi orbital relevant for the opposite bias does not produce an STM image sharply localized in the bond region because the molecule induces a Si-surface dipole dependent on the bias. The dipole voltage dependence arises from molecular charging. This result emphasizes the importance of simulating the molecule as an element in an open quantum system.  相似文献   

19.
Single 4,7,12,15-tetrakis[2.2]paracyclophane were deposited on NiAl(110) surface at 11 K. Two adsorbed species with large and small conductivities were detected by the scanning tunneling microscope (STM). Their vibrational properties were investigated by inelastic electron tunneling spectroscopy (IETS) with the STM. Five vibrational modes were observed for the species with the larger conductivity. The spatially resolved vibrational images for the modes show striking differences, depending on the coupling of the vibrations localized on different functional groups within the molecule to the electronic states of the molecule. The vibrational modes are assigned on the basis of ab initio calculations. No IETS signal is resolved from the species with the small conductivity.  相似文献   

20.
High-resolution scanning tunneling microscopy (STM) images at 5 K, simultaneously resolving the molecular adsorbate and the honeycomb structure of the well-defined Ag[111]-p(4 x 4)+Ag(1.83)O substrate, assign the adsorption site for ethene on the silver oxide surface. Ethene molecules are exclusively adsorbed above a particular subset of Ag(delta)(+) sites in the hexagonal rings of the oxide. Extensive density functional theory (DFT) slab calculations confirm that this is the most stable site, with an adsorption energy of 0.4 eV (39 kJ mol(-1)). Adsorption is accompanied by a large deformation of the hexagonal oxide ring and a significant increase in the C-C bond length. STM image simulations provide qualitative agreement with the experimental images, and the molecular orientation is discussed with the help of simple molecular orbital arguments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号