首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the dynamics and synchronization of improved Colpitts oscillators designed to operate in ultrahigh frequency range are considered. The model is described by a continuous time four-dimensional autonomous system with an exponential nonlinearity. The system is integrated numerically and various bifurcation diagrams and corresponding graphs of largest 1D Lyapunov exponent are plotted to summarize different scenarios leading to chaos. It is found that the oscillator moves from the state of fixed point motion to chaos via the usual paths of period-doubling, intermittency and interior crisis routes when monitoring the bias (i.e. power supply) in tiny ranges. In order to promote chaos-based synchronization designs of this type of oscillators, a synchronization strategy based upon the design of a nonlinear state observer is successfully adapted. The suggested approach enables synchronization to be achieved via a scalar transmitted signal which represents a suitable feature for communication applications. Numerical simulations are performed to demonstrate the effectiveness and feasibility of the proposed technique.  相似文献   

2.
Summary This paper discusses the suppression of chaos in nonlinear driven oscillators via the addition of a periodic perturbation. Given a system originally undergoing chaotic motions, it is desired that such a system be driven to some periodic orbit. This can be achieved by the addition of a weak periodic signal to the oscillator input. This is usually accomplished in open loop, but this procedure presents some difficulties which are discussed in the paper. To ensure that this is attained despite uncertainties and possible disturbances on the system, a procedure is suggested to perform control in closed loop. In addition, it is illustrated how a model, estimated from input/output data, can be used in the design. Numerical examples which use the Duffing-Ueda and modified van der Pol oscillators are included to illustrate some of the properties of the new approach.This work has been supported by CNPq (Brazil) under Grant 200597/90-6 and SERC (UK) under Grant GR/H 35286.  相似文献   

3.
The discrete mathematical model for the respiratory process in bacterial culture obtained by Euler method is investigated. The conditions of existence for flip bifurcation and Hopf bifurcation are derived by using center manifold theorem and bifurcation theory, condition of existence of chaos in the sense of Marotto's definition of chaos is proved. The bifurcation diagrams, Lyapunov exponents and phase portraits are given for different parameters of the model, and the fractal dimension of chaotic attractor was also calculated. The numerical simulation results confirm the theoretical analysis and also display the new and complex dynamical behaviors compared with the continuous model. In particular~ we found that the new chaotic attractor, and new types of two or four coexisting chaotic attractors, and two coexisting invariant torus.  相似文献   

4.
Omega-limit sets play an important role in one-dimensional dynamics. During last fifty year at least three definitions of basic set has appeared. Authors often use results with different definition. Here we fill in the gap of missing proof of equivalency of these definitions. Using results on basic sets we generalize results in paper [P. Oprocha, Invariant scrambled sets and distributional chaos, Dyn. Syst. 24 (2009), no. 1, 31–43.] to the case continuous maps of finite graphs. The Li-Yorke chaos is weaker than positive topological entropy. The equivalency arises when we add condition of invariance to Li-Yorke scrambled set. In this note we show that for a continuous graph map properties positive topological entropy; horseshoe; invariant Li-Yorke scrambled set; uniform invariant distributional chaotic scrambled set and distributionaly chaotic pair are mutually equivalent.  相似文献   

5.
Cross-docking is a distribution strategy that enables the consolidation of less-than-truckload shipments into full truckloads without long-term storage. Due to the absence of a storage buffer inside a cross-dock, local and network-wide cross-docking operations need to be carefully synchronized. This paper proposes a framework specifying the interdependencies between different cross-docking problem aspects with the aim to support future research in developing decision models with practical and scientific relevance. The paper also presents a new general classification scheme for cross-docking research based on the inputs and outputs for each problem aspect. After classifying the existing cross-docking research, we conclude that the overwhelming majority of papers fail to consider the synchronization of local and network-wide cross-docking operations. Lastly, to highlight the importance of synchronization in cross-docking networks, two real-life illustrative problems are described that are not yet addressed in the literature.  相似文献   

6.
Recently, Du has given a new strong definition of chaos by using the shift map. In this paper, we give a proof of the main theorem by constructing a dense uncountable invariant subset of the symbol space Σ2 containing transitive points in a simpler way with the help of a different metric. We also provide two examples, which support this new definition.  相似文献   

7.
This paper focus on schemes and corresponding criteria for group synchronization in complex dynamical networks consisted of different group of chaotic oscillators. The global asymptotically stable criteria for a linearly or adaptively coupled network are derived to ensure each group of oscillators synchronize to the same behavior. Theoretical analysis and numerical simulation results show that the group synchronization can be guaranteed by enhancing the external coupling strength whenever there are connections or not within the groups under the “same input” condition. All of the results are proved rigorously. Finally, a network with three groups, a scale-free sub-network, a small-world sub-network and a ring sub-network, is illustrated, and the corresponding numerical simulations verify the theoretical analysis.  相似文献   

8.
研究了一类混沌时滞随机神经网络同步控制问题.采用更具一般性的时滞反馈控制器,通过巧妙地构造Lyapunov数,分别得到了均方指数同步和均方渐近同步两个判别准则.仿真例子表明,新准则是有效的.  相似文献   

9.
We consider the problem of existence of fixed points of a continuous map in (possibly) noninvariant subsets. A pair of subsets of induces a map given by if and elsewhere. The following generalization of the Lefschetz fixed point theorem is proved: If is metrizable, and are compact ANRs, and is continuous, then has a fixed point in provided the Lefschetz number of is nonzero. Actually, we prove an extension of that theorem to the case of a composition of maps. We apply it to a result on the existence of an invariant set of a homeomorphism such that the dynamics restricted to that set is chaotic.

  相似文献   


10.
A mathematical modeling technique is proposed for oscillation chaotization in an essentially nonlinear dissipative Duffing oscillator with two-frequency excitation on an invariant torus in ?2. The technique is based on the joint application of the parameter continuation method, Floquet stability criteria, bifurcation theory, and the Everhart high-accuracy numerical integration method. This approach is used for the numerical construction of subharmonic solutions in the case when the oscillator passes to chaos through a sequence of period-multiplying bifurcations. The value of a universal constant obtained earlier by the author while investigating oscillation chaotization in dissipative oscillators with single-frequency periodic excitation is confirmed.  相似文献   

11.
12.
We theoretically investigate the asymptotical stability, local bifurcations and chaos of discrete-time recurrent neural networks with the form of
, where the input-output function is defined as a generalized sigmoid function, such asv i =2/π arctan(π/2μiμi), and , etc. Numerical simulations are also provided to demonstrate the theoretical results.  相似文献   

13.
The concept of a 1‐rotational factorization of a complete graph under a finite group was studied in detail by Buratti and Rinaldi. They found that if admits a 1‐rotational 2‐factorization, then the involutions of are pairwise conjugate. We extend their result by showing that if a finite group admits a 1‐rotational ‐factorization with even and odd, then has at most conjugacy classes containing involutions. Also, we show that if has exactly conjugacy classes containing involutions, then the product of a central involution with an involution in one conjugacy class yields an involution in a different conjugacy class. We then demonstrate a method of constructing a 1‐rotational ‐factorization under given a 1‐rotational 2‐factorization under a finite group . This construction, given a 1‐rotational solution to the Oberwolfach problem , allows us to find a solution to when the ’s are even (), and when is an odd prime, with no restrictions on the ’s.  相似文献   

14.
Summary In Part I ([9], this journal), Li and McLaughlin proved the existence of homoclinic orbits in certain discrete NLS systems. In this paper, we will construct Smale horseshoes based on the existence of homoclinic orbits in these systems. First, we will construct Smale horseshoes for a general high dimensional dynamical system. As a result, a certain compact, invariant Cantor set Λ is constructed. The Poincaré map on Λ induced by the flow is shown to be topologically conjugate to the shift automorphism on two symbols, 0 and 1. This gives rise to deterministicchaos. We apply the general theory to the discrete NLS systems as concrete examples. Of particular interest is the fact that the discrete NLS systems possess a symmetric pair of homoclinic orbits. The Smale horseshoes and chaos created by the pair of homoclinic orbits are also studied using the general theory. As a consequence we can interpret certain numerical experiments on the discrete NLS systems as “chaotic center-wing jumping.”  相似文献   

15.
16.
Complex real-world systems consist of collections of interacting processes/events. These processes change over time in response to both internal and external stimuli as well as to the passage of time itself. Many domains such as real-time systems diagnosis, story understanding, and financial forecasting require the capability to model complex systems under a unified framework to deal with both time and uncertainty. Current models for uncertainty and current models for time already provide rich languages to capture uncertainty and temporal information, respectively. Unfortunately, these semantics have made it extremely difficult to unify time and uncertainty in a way which cleanly and adequately models the problem domains at hand. Existing approaches suffer from significant trade offs between strong semantics for uncertainty and strong semantics for time. In this paper, we explore a new model, the Probabilistic Temporal Network (PTN), for representing temporal and atemporal information while fully embracing probabilistic semantics. The model allows representation of time constrained causality, of when and if events occur, and of the periodic and recurrent nature of processes.  相似文献   

17.
In this paper we propose a planning procedure for serving freight transportation requests in a railway network with fast transfer equipment at terminals. We consider a transportation system where different customers make their requests (orders) for moving boxes, i.e., either containers or swap bodies, between different origins and destinations, with specific requirements on delivery times. The decisions to be taken concern the route (and the corresponding sequence of trains) that each box follows in the network and the assignment of boxes to train wagons, taking into account that boxes can change more than one train and that train timetables are fixed.The planning procedure includes a pre-analysis step to determine all the possible sequences of trains for serving each order, followed by the solution of a 0-1 linear programming problem to find the optimal assignment of each box to a train sequence and to a specific wagon for each train in the sequence. This latter is a generalized assignment problem which is NP-hard. Hence, in order to find good solutions in acceptable computation times, two MIP heuristic approaches are proposed and tested through an experimental analysis considering realistic problem instances.  相似文献   

18.
In this paper, we study a two-species model in the form of a coupled system of nonlinear stochastic differential equations (SDEs) that arises from a variety of applications such as aggregation of biological cells and pedestrian movements. The evolution of each process is influenced by four different forces, namely an external force, a self-interacting force, a cross-interacting force and a stochastic noise where the two interactions depend on the laws of the two processes. We also consider a many-particle system and a (nonlinear) partial differential equation (PDE) system that associate to the model. We prove the wellposedness of the SDEs, the propagation of chaos of the particle system, and the existence and (non)-uniqueness of invariant measures of the PDE system.  相似文献   

19.
We investigate the dynamics of a discrete-time predator-prey system of Leslie type. We show algebraically that the system passes through a flip bifurcation and a Neimark-Sacker bifurcation in the interior of $\R^{2}_+$ using center manifold theorem and bifurcation theory. Numerical simulations are implimented not only to validate theoretical analysis but also exhibits chaotic behaviors, including phase portraits, period-11 orbits, invariant closed circle, and attracting chaotic sets. Furthermore, we compute Lyapunov exponents and fractal dimension numerically to justify the chaotic behaviors of the system. Finally, a state feedback control method is applied to stabilize the chaotic orbits at an unstable fixed point.  相似文献   

20.
We consider large systems of stochastic interacting particles through discontinuous kernels which has vision geometrical constrains. We rigorously derive a Vlasov–Fokker–Planck type of kinetic mean-field equation from the corresponding stochastic integral inclusion system. More specifically, we construct a global-in-time weak solution to the stochastic integral inclusion system and derive the kinetic equation with the discontinuous kernels and the inhomogeneous noise strength by employing the 1-Wasserstein distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号