首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The film thickness of one of the most crystalline and highest performing polymer semiconductors, poly(2,5‐bis(3‐tetradecylthiophen‐2‐yl)thieno[3,2‐b]thiophene) (PBTTT), is varied in order to determine the effects of interfaces and confinement on the microstructure and performance in organic field effect transistors (OFETs). Crystalline texture and overall film crystallinity are found to depend strongly on film thickness and thermal processing. The angular distribution of crystallites narrows upon both a decrease in film thickness and thermal annealing. These changes in the film microstructure are paired with thin‐film transistor characterization and shown to be directly correlated with variations in charge carrier mobility. Charge transport is shown to be governed by film crystallinity in films below 20 nm and by crystalline orientation for thicker films. An optimal thickness is found for PBTTT at which the mobility is maximized in unannealed films and where mobility reaches a plateau at its highest value for annealed films.  相似文献   

2.
In this work, crystallization kinetics and aggregate growth of poly(3‐ethylhexylthiophene) (P3EHT) thin films are studied as a function of film thickness. X‐ray diffraction and optical absorption show that individual aggregates and crystallites grow anisotropically and mostly along only two packing directions: the alkyl stacking and the polymer chain backbone direction. Further, it is also determined that crystallization kinetics is limited by the reorganization of polymer chains and depends strongly on the film thickness and average molecular weight. Time‐dependent, field‐effect hole mobilities in thin films reveal a percolation threshold for both low and high molecular weight P3EHT. Structural analysis reveals that charge percolation requires bridged aggregates separated by a distance of ≈2–3 nm, which is on the order of the polymer persistence length. These results thus highlight the importance of tie molecules and inter‐aggregate distance in supporting charge percolation in semiconducting polymer thin films. The study as a whole also demonstrates that P3EHT is an ideal model system for polythiophenes and should prove to be useful for future investigations into crystallization kinetics.  相似文献   

3.
Charge transport in the ribbon phase of poly(2,5‐bis(3‐alkylthiophen‐2‐yl)thieno[3,2‐b]thiophene) (PBTTT)—one of the most highly ordered, chain‐extended crystalline microstructures available in a conjugated polymer semiconductor—is studied. Ribbon‐phase PBTTT has previously been found not to exhibit high carrier mobilities, but it is shown here that field‐effect mobilities depend strongly on the device architecture and active interface. When devices are constructed such that the ribbon‐phase films are in contact with either a polymer gate dielectric or an SiO2 gate dielectric modified by a hydrophobic, self‐assembled monolayer, high mobilities of up to 0.4 cm2 V?1 s?1 can be achieved, which is comparable to those observed previously in terrace‐phase PBTTT. In uniaxially aligned, zone‐cast films of ribbon‐phase PBTTT the mobility anisotropy is measured for transport both parallel and perpendicular to the polymer chain direction. The mobility anisotropy is relatively small, with the mobility along the polymer chain direction being higher by a factor of 3–5, consistent with the grain size encountered in the two transport directions.  相似文献   

4.
The study of monolayer organic field‐effect transistors (MOFETs) provides an effective way to investigate the intrinsic charge transport of semiconductors. To date, the research based on organic monolayers on polymeric dielectrics lays far behind that on inorganic dielectrics and the realization of a bulk‐like carrier mobility on pure polymer dielectrics is still a formidable challenge for MOFETs. Herein, a quasi‐monolayer coverage of pentacene film with orthorhombic phase is grown on the poly (amic acid) (PAA) dielectric layer. More significantly, charge density redistribution occurs at the interface between the pentacene and PAA caused by electron transfer from pentacene to the PAA dielectric layer, which is verified by theoretical simulations and experiments. As a consequence, an enhanced hole accumulation layer is formed and pentacene‐based MOFETs on pure polymer dielectrics exhibit bulk‐like carrier mobilities of up to 13.7 cm2 V?1 s?1 from the saturation region at low VGS, 9.1 cm2 V?1 s?1 at high VGS and 7.6 cm2 V?1 s?1 from the linear region, which presents one of the best results of previously reported MOFETs so far and indicates that the monolayer semiconductor growing on pure polymer dielectric could produce highly efficient charge transport.  相似文献   

5.
Here, controlled p‐type doping of poly(2‐methoxy‐5‐(2′‐ethylhexyloxy)‐p‐phenylene vinylene) (MEH‐PPV) deposited from solution using tetrafluoro‐tetracyanoquinodimethane (F4‐TCNQ) as a dopant is presented. By using a co‐solvent, aggregation in solution can be prevented and doped films can be deposited. Upon doping the current–voltage characteristics of MEH‐PPV‐based hole‐only devices are increased by several orders of magnitude and a clear Ohmic behavior is observed at low bias. Taking the density dependence of the hole mobility into account the free hole concentration due to doping can be derived. It is found that a molar doping ratio of 1 F4‐TCNQ dopant per 600 repeat units of MEH‐PPV leads to a free carrier density of 4 × 1022 m?3. Neglecting the density‐dependent mobility would lead to an overestimation of the free hole density by an order of magnitude. The free hole densities are further confirmed by impedance measurements on Schottky diodes based on F4‐TCNQ doped MEH‐PPV and a silver electrode.  相似文献   

6.
Charge transport is investigated in high‐mobility n‐channel organic field‐effect transistors (OFETs) based on poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} (P(NDI2OD‐T2), Polyera ActivInk? N2200) with variable‐temperature electrical measurements and charge‐modulation spectroscopy. Results indicate an unusually uniform energetic landscape of sites for charge‐carrier transport along the channel of the transistor as the main reason for the observed high‐electron mobility. Consistent with a lateral field‐independent transport at temperatures down to 10 K, the reorganization energy is proposed to play an important role in determining the activation energy for the mobility. Quantum chemical calculations, which show an efficient electronic coupling between adjacent units and a reorganization energy of a few hundred meV, are consistent with these findings.  相似文献   

7.
Previous investigations of the field‐effect mobility in poly(3‐hexylthiophene) (P3HT) layers revealed a strong dependence on molecular weight (MW), which was shown to be closely related to layer morphology. Here, charge carrier mobilities of two P3HT MW fractions (medium‐MW: Mn = 7 200 g mol?1; high‐MW: Mn = 27 000 g mol?1) are probed as a function of temperature at a local and a macroscopic length scale, using pulse‐radiolysis time‐resolved microwave conductivity (PR‐TRMC) and organic field‐effect transistor measurements, respectively. In contrast to the macroscopic transport properties, the local intra‐grain mobility depends only weakly on MW (being in the order of 10?2 cm2 V?1 s?1) and being thermally activated below the melting temperature for both fractions. The striking differences of charge transport at both length scales are related to the heterogeneity of the layer morphology. The quantitative analysis of temperature‐dependent UV/Vis absorption spectra according to a model of F. C. Spano reveals that a substantial amount of disordered material is present in these P3HT layers. Moreover, the analysis predicts that aggregates in medium‐MW P3HT undergo a “pre‐melting” significantly below the actual melting temperature. The results suggest that macroscopic charge transport in samples of short‐chain P3HT is strongly inhibited by the presence of disordered domains, while in high‐MW P3HT the low‐mobility disordered zones are bridged via inter‐crystalline molecular connections.  相似文献   

8.
Force‐field and quantum‐chemical calculations are combined to model the packing of pentacene molecules at the atomic level on two polymer dielectric layers (poly(methyl methacrylate) (PMMA) versus polystyrene (PS)) widely used in field‐effect transistors and to assess the impact of electrostatic interactions at the interface on the charge mobility values in the pentacene layers. The results show unambiguously that the electrostatic interactions introduce a significant energetic disorder in the pentacene layer in contact with the polymer chains; a drop in the hole mobility by a factor of 5 is predicted with PS chains while a factor of 60 is obtained for PMMA due to the presence of polar carbonyl groups.  相似文献   

9.
Ambipolar thin‐film transistors based on a series of air‐stable, solution‐processed blends of an n‐type polymer poly(benzobisimidazobenzophenanthroline) (BBL) and a p‐type small molecule, copper phthalocyanine (CuPc) are demonstrated, where all fabrication and measurements are performed under ambient conditions. The hole mobilities are in the range of 6.0 × 10–6 to 2.0 × 10–4 cm2 V–1 s–1 and electron mobilities are in the range of 2.0 × 10–6 to 3.0 × 10–5 cm2 V–1 s–1, depending on the blend composition. UV‐vis spectroscopy and electron diffraction show crystallization of CuPc in the metastable α‐crystal form within the semicrystalline BBL matrix. These CuPc domains develop into elongated ribbon‐like crystalline nanostructures when the blend films are processed in methanol, but not when they are processed in water. On methylene chloride vapor annealing of the blend films, a phase transformation of CuPc from the α‐form to the β‐form is observed, as shown by optical absorption spectroscopy and electron diffraction. Ambipolar charge transport is only observed in the blend films where CuPc crystallized in the elongated ribbon‐like nanostructures (α‐form). Ambipolar behavior is not observed with CuPc in the β‐polymorph. Unipolar hole mobilities as high as 2.0 × 10–3 cm2 V–1 s–1 are observed in these solution‐processed blend field‐effect transistors (FETs) on prolonged treatment in methanol, comparable to previously reported hole mobilities in thermally evaporated CuPc FETs. These results show that ambipolar charge transport and carrier mobilities in multicomponent organic semiconductors are intricately related to the phase‐separated nanoscale and crystalline morphology.  相似文献   

10.
The development of organic transistors for flexible electronics requires the understanding of device behavior upon the application of strain. Here, a comprehensive study of the effect of polymer‐dielectric and semiconductor chemical structure on the device performance under applied strain is reported. The systematic change of the polymer dielectric results in the modulation of the effects of strain on the mobility of organic field‐effect transistor devices. A general method is demonstrated to lower the effects of strain in devices by covalent substitution of the dielectric surface. Additionally, the introduction of a hexyl chain at the peripheries of the organic semiconductor structure results in an inversion of the effects of strain on device mobility. This novel behavior may be explained by the capacitative coupling of the surface energy variations during applied strain.  相似文献   

11.
A series of isoindigo‐based conjugated polymers (PII2F‐CmSi, m = 3–11) with alkyl siloxane‐terminated side chains are prepared, in which the branching point is systematically “moved away” from the conjugated backbone by one carbon atom. To investigate the structure–property relationship, the polymer thin film is subsequently tested in top‐contact field‐effect transistors, and further characterized by both grazing incidence X‐ray diffraction and atomic force microscopy. Hole mobilities over 1 cm2 V?1 s?1 is exhibited for all soluble PII2F‐CmSi (m = 5–11) polymers, which is 10 times higher than the reference polymer with same polymer backbone. PII2F‐C9Si shows the highest mobility of 4.8 cm2 V?1 s?1, even though PII2F‐C11Si exhibits the smallest π–π stacking distance at 3.379 Å. In specific, when the branching point is at, or beyond, the third carbon atoms, the contribution to charge transport arising from π–π stacking distance shortening becomes less significant. Other factors, such as thin‐film microstructure, crystallinity, domain size, become more important in affecting the resulting device's charge transport.  相似文献   

12.
The nature of charge carriers in recently developed high mobility semiconducting donor‐acceptor polymers is debated. Here, localization due to charge relaxation is investigated in a prototypal system, a good electron transporting naphthalenediimide based copolymer, by means of current‐voltage IV electrical characteristics and charge modulation spectroscopy (CMS) in top‐gate field‐effect transistors (FETs), combined with density functional theory (DFT) and time dependent DFT (TDDFT) calculations. In particular, pristine copolymer films are compared with films that underwent a melt‐annealing process, the latter leading to a drastic change of the microstructure. Despite the packing modification, which involves also the channel region, both the electron mobility and the energy of polaronic transitions are substantially unchanged upon melt‐annealing. The polaron absorption features can be rationalized and reproduced by TDDFT calculations for isolated charged oligomers. Therefore, it is concluded that in such a high electron mobility copolymer the charge transport process involves polaronic species which are intramolecular in nature and, from a more general point of view, that interchain delocalization of the polaron is not necessary to sustain charge mobilities in the 0.1 to 1 cm2 V 1 s–1 range. These findings contribute to the rationalization of the charge transport process in the recently developed class of donor‐acceptor π‐conjugated copolymers featuring high charge mobilities and complex morphologies.  相似文献   

13.
Highly crystalline thin films in organic semiconductors are important for applications in high‐performance organic optoelectronics. Here, the effect of grain boundaries on the Hall effect and charge transport properties of organic transistors based on two exemplary benchmark systems is elucidated: (1) solution‐processed blends of 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene (C8‐BTBT) small molecule and indacenodithiophene‐benzothiadiazole (C16IDT‐BT) conjugated polymer, and (2) large‐area vacuum evaporated polycrystalline thin films of rubrene (C42H28). It is discovered that, despite the high field‐effect mobilities of up to 6 cm2 V?1 s?1 and the evidence of a delocalized band‐like charge transport, the Hall effect in polycrystalline organic transistors is systematically and significantly underdeveloped, with the carrier coherence factor α < 1 (i.e., yields an underestimated Hall mobility and an overestimated carrier density). A model based on capacitively charged grain boundaries explaining this unusual behavior is described. This work significantly advances the understanding of magneto‐transport properties of organic semiconductor thin films.  相似文献   

14.
Crystalline organic molecules often exhibit the ability to assemble into multiple crystal structures depending on the processing conditions. Exploiting this polymorphism to optimize molecular orbital overlap between adjacent molecules in the unit lattice is an effective method for improving charge transport within the material. In this study, grazing incident X‐ray diffraction was employed to demonstrate the formation of tighter π‐π stacking poly(3‐hexylthiophene‐2,5‐diyl) polymorphs in films spin coated from ferrocene‐containing solutions. As a result, the addition of ferrocene to casting solutions yields thin‐film transistors which exhibit approximately three times higher source‐drain currents and charge mobilities than neat polymer devices. Nevertheless, XPS depth profiling and NMR analyses of the active layer reveal that all ferrocene is removed during the spin coating process, which may be an essential factor to achieve high mobilities. Such insights gleaned from ferrocene/poly(3‐hexylthiophene‐2,5‐diyl) mixtures can serve as a template for selection and optimization of other small molecule/polymer systems with greater baseline charge mobilities.  相似文献   

15.
The charge‐transport processes in organic p‐channel transistors based on the small‐molecule 2,8‐difluoro‐5,11‐bis(triethylsilylethynyl)anthradithiophene (diF‐TES ADT), the polymer poly(triarylamine)(PTAA) and blends thereof are investigated. In the case of blend films, lateral conductive atomic force microscopy in combination with energy filtered transmission electron microscopy are used to study the evolution of charge transport as a function of blends composition, allowing direct correlation of the film's elemental composition and morphology with hole transport. Low‐temperature transport measurements reveal that optimized blend devices exhibit lower temperature dependence of hole mobility than pristine PTAA devices while also providing a narrower bandgap trap distribution than pristine diF‐TES ADT devices. These combined effects increase the mean hole mobility in optimized blends to 2.4 cm2/Vs – double the value measured for best diF‐TES ADT‐only devices. The bandgap trap distribution in transistors based on different diF‐TES ADT:PTAA blend ratios are compared and the act of blending these semiconductors is seen to reduce the trap distribution width yet increase the average trap energy compared to pristine diF‐TES ADT‐based devices. Our measurements suggest that an average trap energy of <75 meV and a trap distribution of <100 meV is needed to achieve optimum hole mobility in transistors based on diF‐TES ADT:PTAA blends.  相似文献   

16.
A multi‐ring, ladder‐type low band‐gap polymer (PIDTCPDT‐DFBT) is developed to show enhanced light harvesting, charge transport, and photovoltaic performance. It possesses excellent planarity and enhanced effective conjugation length compared to the previously reported fused‐ring polymers. In order to understand the effect of extended fused‐ring on the electronic and optical properties of this polymer, a partially fused polymer PIDTT‐T‐DFBT is also synthesized for comparison. The fully rigidified polymer provides lower reorganizational energy, resulting in one order higher hole mobility than the reference polymer. The device made from PIDTCPDT‐DFBT also shows a quite promising power conversion efficiency of 6.46%. Its short‐circuit current (14.59 mA cm?2) is also among the highest reported for ladder‐type polymers. These results show that extending conjugation length in fused‐ring ladder polymers is an effective way to reduce band‐gap and improve charge transport for efficient photovoltaic devices.  相似文献   

17.
Organic field‐effect transistors (OFETs) based upon blends of small molecular semiconductors and polymers show promise for high performance organic electronics applications. Here the charge transport characteristics of high mobility p‐channel organic transistors based on 2,8‐difluoro‐5,11‐bis(triethylsilylethynyl) anthradithiophene:poly(triarylamine) blend films are investigated. By simple alteration of the film processing conditions two distinct film microstructures can be obtained: one characterized by small spherulitic grains (SG) and one by large grains (LG). Charge transport measurements reveal thermally activated hole transport in both SG and LG film microstructures with two distinct temperature regimes. For temperatures >115 K, gate voltage dependent activation energies (EA) in the range of 25–60 meV are derived. At temperatures <115 K, the activation energies are smaller and typically in the range 5–30 meV. For both film microstructures hole transport appears to be dominated by trapping at the grain boundaries. Estimates of the trap densities suggests that LG films with fewer grain boundaries are characterized by a reduced number of traps that are less energetically disordered but deeper in energy than for small SG films. The effects of source and drain electrode treatment with self‐assembled monolayers (SAMs) on current injection is also investigated. Fluorinated thiol SAMs were found to alter the work function of gold electrodes by up to ~1 eV leading to a lower contact resistance. However, charge transport analysis suggests that electrode work function is not the only parameter to consider for efficient charge injection.  相似文献   

18.
A comprehensive structure and performance study of thin blend films of the small‐molecule semiconductor, 2,8‐difluoro‐5,11‐bis(triethylsilylethynyl)anthradithiophene (diF‐TESADT), with various insulating binder polymers in organic thin‐film transistors is reported. The vertically segregated composition profile and nanostructure in the blend films are characterized by a combination of complementary experimental methods including grazing incidence X‐ray diffraction, neutron reflectivity, variable angle spectroscopic ellipsometry, and near edge X‐ray absorption fine structure spectroscopy. Three polymer binders are considered: atactic poly(α‐methylstyrene), atactic poly(methylmethacrylate), and syndiotactic polystyrene. The choice of polymer can strongly affect the vertical composition profile and the extent of crystalline order in blend films due to the competing effects of confinement entropy, interaction energy with substrate surfaces, and solidification kinetics. The variations in the vertically segregated composition profile and crystalline order in thin blend films explain the significant impacts of binder polymer choice on the charge carrier mobility of these films in the solution‐processed bottom‐gate/bottom‐contact thin‐film transistors.  相似文献   

19.
A novel semiconductor based on annelated β‐trithiophenes is presented, possessing an extraordinary compressed packing mode combining edge‐to‐face π–π interactions and S…S interactions in single crystals, which is favorable for more effective charge transporting. Accordingly, the device incorporating this semiconductor shows remarkably high charge carrier mobility, as high as 0.89 cm2 V?1 s?1, and an on/off ratio of 4.6 × 107 for vacuum‐deposited thin films.  相似文献   

20.
The influence of the interface of the dielectric SiO2 on the performance of bottom‐contact, bottom‐gate poly(3‐alkylthiophene) (P3AT) field‐effect transistors (FETs) is investigated. In particular, the operation of transistors where the active polythiophene layer is directly spin‐coated from chlorobenzene (CB) onto the bare SiO2 dielectric is compared to those where the active layer is first spin‐coated then laminated via a wet transfer process such that the film/air interface of this film contacts the SiO2 surface. While an apparent alkyl side‐chain length dependent mobility is observed for films directly spin‐coated onto the SiO2 dielectric (with mobilities of ≈10?3 cm2 V?1 s?1 or less) for laminated films mobilities of 0.14 ± 0.03 cm2 V?1 s?1 independent of alkyl chain length are recorded. Surface‐sensitive near edge X‐ray absorption fine structure (NEXAFS) spectroscopy measurements indicate a strong out‐of‐plane orientation of the polymer backbone at the original air/film interface while much lower average tilt angles of the polymer backbone are observed at the SiO2/film interface. A comparison with NEXAFS on crystalline P3AT nanofibers, as well as molecular mechanics and electronic structure calculations on ideal P3AT crystals suggest a close to crystalline polymer organization at the P3AT/air interface of films from CB. These results emphasize the negative influence of wrongly oriented polymer on charge carrier mobility and highlight the potential of the polymer/air interface in achieving excellent “out‐of‐plane” orientation and high FET mobilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号