首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The basicity of regular and low-coordinate (LC) sites (steps, edges and corners) at the surface of alkaline earths with NaCl structure (MgO, CaO, SrO, and BaO) has been investigated by using BF3 as a probe molecule. B-O and B-F distances; O-B-F bond angles; B-F asymmetric stretching frequencies; O, B and F 1s core-level binding energies; and the interaction energy of adsorbed BF3 were determined by means of DFT calculations on cluster models. These adsorption properties were compared with those of complexes of BF3 with molecules with various basicities (water, ammonia, phosphine, etc.). We show that many properties of adsorbed BF3, and in particular the experimentally accessible shifts in vibrational frequency, in B and F 1s core levels, and in BF3 desorption temperature, exhibit a linear correlation with the surface basicity as measured by the vertical ionization potential of the oxide anions. On the other hand, shifts of the O 1s core level binding energy do not provide a simple way to detect surface basicity. On a given oxide surface, the differing basicities of various sites result in measurable differences in adsorption properties. This suggests the potential use of BF3 as a probe molecule for titrating LC sites on the surface of ionic oxides.  相似文献   

2.
We have performed extensive density functional theory (DFT) calculations, partial cross sections, dipole prepared continuum orbitals, dipole amplitudes and phase shifts, asymmetry parameters β, and molecular frame photoelectron angular distributions, to elucidate the O1s photoionization dynamics of NO(2) molecule with emphasis on the shape resonances in the O1s ionization continuum. In the shape resonance region, the β parameters and photoelectron angular distributions have been compared with our experimental results. Fairly good agreement between the theory and experiment has confirmed that the DFT level calculations can well describe the photoionization dynamics of the simple molecule such as NO(2). Interference due to equivalent atom photoionization is theoretically considered, and the possibility of detection of the effect in the two degenerate channels with different combinations of light polarization and photoemission direction is discussed.  相似文献   

3.
Previously reported dramatic changes in photoelectron angular distributions (PADs) as a function of photoelectron kinetic energy following the ionization of S1 p-difluorobenzene are shown to be explained by a shape resonance in the b(2g) symmetry continuum. The characteristics of this resonance are clearly demonstrated by a theoretical multiple-scattering treatment of the photoionization dynamics. New experimental data are presented which demonstrate an apparent insensitivity of the PADs to both vibrational motion and prepared molecular alignment, however, the calculations suggest that strong alignment effects may nevertheless be recognized in the detail of the comparison with experimental data. The apparent, but unexpected, indifference to vibrational excitation is rationalized by considering the nature of the resonance. The correlation of this shape resonance in the continuum with a virtual pi* antibonding orbital is considered. Because this orbital is characteristic of the benzene ring, the existence of similar resonances in related substituted benzenes is discussed.  相似文献   

4.
Inner- and valence-shell electron energy loss spectra of gaseous SF6, SeF6 and TeF6 have been measured at high impact energy (2.0–3.7 keV) and zero degree scattering angle. The resulting inner-shell excitation spectra include F 1s, S 2s and 2p in SF6: F 1s, Se 3s, 3p and 3d in SeF6 and F 1s, Te 4s, 4p, 4d and 3d in TeF6. The results for each of these hexafluorides are interpreted, in the framework of the potential barrier model, as excitations to resonances involving a common manifold of virtual valence (inner-well) orbitals and also to Rydberg (outer-well) orbitals. The below-edge shape resonances in corresponding inner-shell excitation spectra of these hexafluorides show very similar variations in intensities in accord with expectations based on electric-dipole selection rules. This is an indication that these below-edge resonances in SeF6 and TeF6 are of the same symmetry as those in SF6 (i.e. a1g and t1u). The continuum (above-edge) shape resonances in SeF6 also show similar spectral behavior to those of SF6 and can be understood by including Se 4d and S 3d orbitals in the basis for the respective MO schemes. However, in TeF6 completely different spectral behavior is observed for the continuum resonances. In particular, there is a dramatic series of intense resonances observed above the Te 3d and 4d edges. The TeF6 spectrum can only be understood by extending the MO basis set to include the Te 4f orbitals which are even lower lying than the Te 5d orbitals. Therefore, these continuum resonances which are also seen in the F 1 s and Te 3p spectra of TeF6 are assigned to l=3 (f-type) continuum shape resonances due to involvement of the 4f orbitals rather than the l=2 (d-type) continuum resonances observed in SF6 and SeF6. This is the first reported observation of such f-type continuum shape resonances and such considerations will likely prove to be important in the understanding of near-edge spectra of heavy atom containing species. The VSEELS spectra which are very similar for the three hexafluorides also show significant continuum shape resonances. A consideration of both the ISEELS and the VSEELS spectra indicates that there is a weakening of the potential barrier in going through the series from SF6, SeF6 to TeF6.  相似文献   

5.
Short-lived (CF(3))(3)B and (CF(3))(3)BCF(2) are generated as intermediates by thermal dissociation of (CF(3))(3)BCO and F(-) abstraction from the weak coordinating anion [B(CF(3))(4)](-), respectively. Both Lewis acids cannot be detected because of their instability with respect to rearrangement reactions at the B-C-F moiety. A cascade of 1,2-fluorine shifts to boron followed by perfluoroalkyl group migrations and also difluorocarbene transfer reactions occur. In the gas phase, (CF(3))(3)B rearranges to a mixture of linear perfluoroalkyldifluoroboranes C(n)()F(2)(n)()(+1)BF(2) (n = 2-7), while the respective reactions of (CF(3))(3)BCF(2) result in a mixture of linear (n = 2-4) and branched monoperfluoroalkyldifluoroboranes, e.g., (C(2)F(5))(CF(3))FCBF(2). For comparison, the reactions of [CF(3)BF(3)](-) and [C(2)F(5)BF(3)](-) with AsF(5) are studied, and the products in the case of [CF(3)BF(3)](-) are BF(3) and C(2)F(5)BF(2) whereas in the case of [C(2)F(5)BF(3)](-), C(2)F(5)BF(2) is the sole product. In contrast to reports in the literature, it is found that CF(3)BF(2) is too unstable at room temperature to be detected. The decomposition of (CF(3))(3)BCO in anhydrous HF leads to a mixture of the new conjugate Br?nsted-Lewis acids [H(2)F][(CF(3))(3)BF] and [H(2)F][C(2)F(5)BF(3)]. All reactions are modeled by density functional calculations. The energy barriers of the transition states are low in agreement with the experimental results that (CF(3))(3)B and (CF(3))(3)BCF(2) are short-lived intermediates. Since CF(2) complexes are key intermediates in the rearrangement reactions of (CF(3))(3)B and (CF(3))(3)BCF(2), CF(2) affinities of some perfluoroalkylfluoroboranes are presented. CF(2) affinities are compared to CO and F(-) affinities of selected boranes showing a trend in Lewis acidity, and its influence on the stability of the complexes is discussed. Fluoride ion affinities are calculated for a variety of different fluoroboranes, including perfluorocarboranes, and compared to those of the title compounds.  相似文献   

6.
The gas-phase ion chemistry of BF3/HN3 mixtures was investigated by the joint application of mass spectrometric techniques and theoretical methods. The addition of BF2+ to HN3 led to the first observation of [BFnNxHn-1]+ (n=1, 2; x=1, 3) ions in the gas phase. Consistent with collisionally activated dissociation (CAD) mass spectrometric results, theoretical calculations performed at the B3LYP and CCSD(T) levels identified the F2B-NH-N2+, F2B-NH+, FB-N3+, and FBN+ ions as the most stable isomers on the [BFnNxHn-1]+ (n=1, 2; x=1, 3) potential energy surfaces. The F2B-NH+ and FBN+ ions, characterized by a triplet ground state, are formed from F2B-NH-N2+ and FB-N3+ through a spin-forbidden decomposition process. It is worth noting that F2BNH-N2+ is the protonated form of difluoroboron azide, BF2N3, a neutral molecule that has never been experimentally detected. The application of theoretical and experimental methods allowed evaluation of the unknown PA of BF2N3, whose best theoretical estimate 171.2+/-3 kcal mol-1 at the CCSD(T) level is comparable with the experimental one, 170.1+/-3 kcal mol-1. The main interest of all these ionic species is represented by their possible application in boron nitride (BN) physical and chemical vapor deposition.  相似文献   

7.
《Chemical physics letters》1987,137(6):521-523
Recent photoelectron spectroscopic studies in a (2 + 1) REMPI of NO via the Rydberg D2Σ+ state have revealed anomalous ionic rotational branching ratios. We have performed ab initio calculations of these branching ratios and find that the molecular nature of the ionization continuum plays an essential role in the dynamics. Even though the bound orbital is very atomic-like (⪢ 98% p-like), the photoelectron continuum wavefunction is quite sensitive to the non-spherical nature of the molecular ionic potential and causes a strong persistence of the p-partial wave which, in turn, leads to a large ΔN = 0 peak.  相似文献   

8.
The boron 1s photoelectron spectrum of (11)BF(3) has been measured at a photon energy of 400 eV and a resolution of about 55 meV. The pronounced vibrational structure seen in the spectrum has been analyzed to give the harmonic and anharmonic vibrational frequencies of the symmetric stretching mode, 128.1 and 0.15 meV, as well as the change in equilibrium BF bond length upon ionization, -5.83 pm. A similar change in bond length has been observed for PF(3) and SiF(4), but a much smaller change for CF(4). Theoretical calculations for BF(3) that include the effects of electron correlation give results that are in reasonable accord with the experimental values. The Lorentzian (lifetime) width of the boron 1s core hole in BF(3) is found to be 72 meV, comparable to the value of 77 meV that has been reported for CF(4).  相似文献   

9.
Density functional theory (B3LYP) calculations were performed on the Me and F substituted valence isomeric forms of 1‐H‐boratabenzene. The calculations revealed that the planar benzene analog is the lowest energy isomer. Its aromaticity is analyzed in the light of the nucleus‐independent chemical shift (NICS) and shows that aromaticity increases in F substituted, but decreases in Me substituted. These calculations indicate substitution of BH with BMe and BF doesn't cause significant variation in bond length.  相似文献   

10.
The decrease in D-->A bond lengths, previously reported for some Lewis acid/base complexes, in going from the gas to the solid phases is investigated by obtaining an accurate crystal structure of solid ND(3)BF(3) by powder neutron diffraction. The B-N internuclear distance is 1.554(3) A, 0.118 A shorter than the most recent gas-phase microwave value and 0.121 A shorter than the single molecule geometry optimized (1.672 A, CISD/6-311++G(d,p)) bond length. The crystal structure also shows N-D.F-B hydrogen bonds. The effects of this change in structure and of intermolecular hydrogen-bonding on nuclear magnetic shielding (i.e., chemical shifts) and the nuclear quadrupolar coupling constants (QCC) are investigated by ab initio molecular orbital and density functional theory calculations. These calculations show that the nitrogen ((15)N and (14)N) and boron ((11)B and (10)B) chemical shifts should be rather insensitive to changes in r(BN) and that the concomitant changes in molecular structure. Calculations on hydrogen-bonded clusters, based on the crystal structure, indicate that H-bonding should also have very little effect on the chemical shifts. On the other hand, the (11)B and (14)N QCCs show large changes because of both effects. An analysis of the (10)B[(19)F] line shape in solid ND(3)(10)BF(3) yields a (11)B QCC of +/-0.130 MHz. This is reasonably close an earlier value of +/-0.080 MHz and the value of +/-0.050 MHz calculated for a [NH(3)BF(3)](4) cluster. The gas-phase value is 1.20 MHz. Temperature-dependent deuterium T(1) measurements yield an activation energy for rotation of the ND(3) group in solid ND(3)BF(3) of 9.5 +/- 0.1 kJ/mol. Simulations of the temperature-dependent T(1) anisotropy gave an E(a) of 9.5 +/- 0.2 kJ/mol and a preexponential factor, A, of 3.0 +/- 0.1 x 10(12) s(-)(1). Our calculated value for a [NH(3)BF(3)](4) cluster is 16.4 kJ/mol. Both are much higher than the previous value of 3.9 kJ/mol, from solid-state proton T(1) measurements.  相似文献   

11.
The mechanism, catalytic effect and solvent effect of the hetero-Diels-Alder reac- tions between 3-pyridinedithioesters and 1-phenylsulfanylbutadiene have been studied theoretically using density functional theory (DFT) at the B3LYP/6-31G(d) level. The results show that all of these reactions proceed in a concerted but asynchronous way. In some reactions the formation of C-S bond is prior to that of C-C bond and the opposite results are found in other reactions. The BF3 catalyst may lower the activation barriers by changing the energies of LUMO for 3-pyridine- dithioester. THF solvent has trivial influence on the potential energy surface of these reactions. With the BF3-catalyzed reactions, regioselectivity and stereoselectivity observed experimentally were predicted correctly by calculations and these results originate probably from C-H···F interaction in two transition states.  相似文献   

12.
A room temperature ionic liquid (IL) based on the fluorosulfate anion (SO(3)F(-)) has been synthesized by the reaction of 1-ethyl-3-methylimidazolium (EMIm(+)) chloride and fluorosulfuric acid (HOSO(2)F). The viscosity, ionic conductivity, and electrochemical window of EMImSO(3)F at 25 °C are 46.6 mPa s, 10.8 mS cm(-1), and 4.3 V, respectively. According to a solvatochromic measurement using ILs, there is a trend in the donor ability of fluoro- and oxofluoroanions, PF(6)(-) < BF(4)(-) < N(SO(2)CF(3))(2)(-) < SO(3)CF(3)(-) < SO(3)F(-) < PO(2)F(2)(-), which is explained by the atomic charges obtained from quantum mechanical calculations. The 1 : 2 and 1 : 3 stoichiometric reactions of EMImCl and HOSO(2)F give EMIm(FO(2)SOH)OSO(2)F and EMIm(FO(2)SOH)(2)O(2)SOF, respectively. Both the salts are liquid at room temperature without a HOSO(2)F dissociation pressure (< 1 Pa) and have low viscosity and high ionic conductivity (9.2 mPa s and 30.8 mS cm(-1) for EMIm(FO(2)SOH)OSO(2)F and 5.1 mPa s and 43.2 mS cm(-1) for EMIm(FO(2)SOH)(2)O(2)SOF). The vibrational modes and bonding properties of these anionic species are discussed with the aid of quantum mechanical calculations. The (FO(2)SOH)OSO(2)F(-) anion in EMIm(FO(2)SOH)OSO(2)F does not have an inversion centre, which stands in contrast to the one with an inversion centre (e.g. observed in solid Cs(FO(2)SOH)OSO(2)F). The (FO(2)SOH)(2)O(2)SOF(-) anion in EMIm(FO(2)SOH)(2)O(2)SOF is characterized by vibrational spectroscopy under C(s) symmetry.  相似文献   

13.
Density functional calculations have been used to investigate the interaction between Pd(n) clusters (n = 1-6) and 1-butyl-3-methylimidazolium (Bmim(+)) based ionic liquids (ILs) with the anions [Cl(-)], [BF(4)(-)] and [PF(6)(-)]. The interaction of small Pd(n) clusters (1 ≤ n ≤ 6) with a single cation or anion is also studied. The interaction strengths in anion-Pd(n) categories with n = 1-6 follow the trend [Cl(-)] > [BF(4)(-)] > [PF(6)(-)]. The cation could also form interactions with Pd(n) clusters. Compared with a single anion or cation, the interaction could be strengthened when palladium particles interact with the whole ion pair. Further studies indicated that anionPd interaction is the decisive factor in the interaction between the Pd atom and the whole ion pair. The Pd(2) dimer interacts with the whole ion pair much more strongly than the Pd atom. Solvent effects have been considered in the present study by means of the polarizable continuum model. It is found that the stability of [Bmim(+)·BF(4)(-)]-Pd(n) and [Bmim(+)·PF(6)(-)]-Pd(n) complexes with n = 1 and 2 can be improved in solvents.  相似文献   

14.
N-Benzyl-substituted complexes [(triazacyclohexane)Ni(NCMe)3](BF4)2 and their diamagnetic zinc analogues have been prepared and characterized by X-ray crystallography. The T1 spin decoupling observed in their paramagnetic 13C NMR spectra can be quantitatively described by newly derived expressions that allow an independent determination of T2 of the 13C signal, T1 of the attached H or F, and the 1J coupling constant by line shape analysis.  相似文献   

15.
Treatment of 1,8-bis(diphenylhydroxymethyl)naphthalene with a mixture of [HBF(4)](aq) and (CF(3)CO)(2)O affords the corresponding dication, 1,8-bis(diphenylmethylium)naphthalenediyl (1(2+)), which was isolated as the [BF4]- salt. This dication has been fully characterized, and its structure has been studied computationally. The (13)C NMR resonance of the methylium centers appears at 207.7 ppm. As indicated by an X-ray single-crystal analysis, the vicinal methylium centers are separated by 3.112(4) A. Dication (1(2+)) reacts with fluoride to afford [1-F]+ which has been isolated as the [BF4]- salt. The fluorine atom of [1-F](+) is connected to one of the former methylium centers through a typical C-F bond of 1.424(2) A and forms a long interaction of 2.444(2) A with the other methylium center. While the structure of [1-F]+ can be largely accounted for by considering a simple methylium formulation, density functional calculations followed by an Atom In Molecules analysis as well as a calculation of the Boys localized orbitals indicate that the long C-F interaction of 2.444(2) A corresponds to a dative bond. Hence, formulation of [1-F]+ as an unsymmetrical fluoronium must also be considered. As indicated by 1H NMR spectroscopy, the structure of this ion is fluxional; the fluorine atom oscillates between the former methylium centers with apparent activation parameters of DeltaH++ = 52(+/-3) kJ mol(-1) and DeltaS++ = -18(+/-9) J K(-1) mol(-1) as derived from line shape analysis. This dynamic process, which has also been studied theoretically by B3LYP density functional theory and M?ller-Plesset second-order perturbation theory methods, involves symmetrical fluoronium ions as low-energy transition states.  相似文献   

16.
The N,N',S-donor ligand 4-methoxy-3,5-dimethyl-2-((3-(2-(methylthio)phenyl)-1H-pyrazol-1-yl)methyl)pyridine (L) was prepared from 2-(chloromethyl)-4-methoxy-3,5-dimethylpyridine hydrochloride and 3-(2-(methylthio)phenyl)-1H-pyrazole. The Cu(I) complexes [Cu2(L)2CH3CN][Cu(L)CH3CN](BF4)3 (1), [Cu(L)PPh3]BF4 (2), and [Cu6(L)2(C6F5S)6] (3) were prepared and characterized by X-ray crystallography (PPh3=triphenylphosphine, C6F5S-=pentafluorothiophenolate). The unit cell of compound 1 consists of cocrystallized mononuclear and dinuclear entities in which all of the copper atoms exhibit distorted tetrahedral coordination. Compound 2 is monomeric with L bound in the kappa3-N,N',S mode and a PPh3 molecule that completes the coordination environment. Compound 2 presents a fluxional behavior in CDCl3 solution due to the boat inversion of the six-membered N,N' chelate ring (DeltaH=+43.6(3) kJ mol(-1), DeltaS=-16(1) J mol(-1) K(-1)). Crystallization of 3 in acetonitrile leads to a polynuclear structure that contains a CH3CN molecule coordinated to one of the copper atoms: [Cu6(L)2(C6F5S)6CH3CN] (3a). The core of 3a partially resembles a {Cu4S6} adamantane-like moiety, the only difference being that the Cu-NCCH3 interaction leads to the opening of the cluster by disrupting a Cu-Cu interaction. Part of this assembly is found in the yeast metallothionein copper(I)-cysteinate core whose crystal structure has recently been reported. Two additional [Cu(L)]+ peripheral moieties interact with the cluster by means of bridging thiolates. ESI-mass spectrometry, conductivity measurements, and 1H/19F pulsed gradient spin echo (PGSE) NMR experiments suggest that 3a dissociates in acetonitrile solution: 3a+CH3CN-->[Cu4(C6F5S)6]2-+2[Cu(L)CH3CN]+. The stability of the cluster with respect to the hypothetical mononuclear species, [Cu(L)(C6F5S)], is confirmed by DFT calculations (B3LYP), which illustrate the exergonic character of the reaction: 6[Cu(L')(C6H5S)]-->[Cu6(L')2(C6H5S)6]+4L' (DeltaG298=-58.6 kJ mol(-1), where L' and C6H5S- are simplified models for L and C6F5S-, respectively). The energetics pertinent to the ionic dissociation of the cluster in acetonitrile is computed using the polarizable continuum model (PCM) approach.  相似文献   

17.
Terthiophene and bithiophene derivatives functionalized by BF(2) chelation were synthesized as a new type of electron acceptor, and their properties were compared to those of bifuran and biphenyl derivatives. These new compounds are characterized by quadrupolar structures due to resonance contributors generated by BF(2) chelation. The bithiophene derivative has a strong quadrupolar character compared with the bifuran and biphenyl derivatives because their hydrolytic analyses indicated that the bithiophene moiety has a larger on-site Coulomb repulsion than the others. The terthiophene derivative has a smaller on-site Coulomb repulsion than the bithiophene derivative due to the addition of a thiophene spacer. These BF(2) complexes exhibit long-wavelength absorptions and according to measurements of ionization potentials and absorption edges they have energetically low-lying HOMOs and LUMOs. The crystal structure of the bithiophene derivative is of the herringbone type, with short F···S and F···C contacts affording dense crystal packing. n-Type semiconducting behaviour was observed in organic field-effect transistors based on these BF(2) complexes.  相似文献   

18.
We report the syntheses, X-ray structures, and reductive electrochemistry of the Fe(II) complexes [(dmgBF(2))(2)Fe(MeCN)(2)] (1; dmg = dimethylglyoxime, MeCN = acetonitrile) and [(dmgBF(2))Fe((t)Bu(i)NC)(2)] (2; (t)Bu(i)NC = tert-butylisocyanide). The reaction of 1 with Na/Hg amalgam led to isolation and the X-ray structure of [(dmgBF(2))(2)Fe(glyIm)] (3; glyIm = glyimine), wherein the (dmgBF(2))(2) macrocyclic frame is bent to accommodate the binding of a bidentate apical ligand. We also report the X-ray structure of a rare mixed-valence Fe(4) cluster with supporting dmg-type ligands. In the structure of [(dmg(2)BF(2))(3)Fe(3)((1)/(2)dmg)(3)Fe(O)(6)] (4), the (dmgBF(2))(2) macrocycle has been cleaved, eliminating BF(2) groups. Density functional theory calculations and electron paramagnetic resonance data are in accordance with a central Fe(III) ion surrounded by three formally Fe(II)dmg(2)BF(2) units.  相似文献   

19.
A theoretical study of the electronic structure of the photoactive yellow protein (PYP) model chromophore, para-coumaric acid (p-CA), is presented. Electronically excited states of the phenolate and carboxylate isomers of the deprotonated p-CA are characterized by high-level ab initio methods including state-specific and multistate multireference pertrubation theory (SS-CASPT2, and MS-CASPT2), equation-of-motion coupled-cluster methods with single and double substitutions (EOM-CCSD) and with an approximate account of triple excitations (CC3). We found that the two isomers have distinctly different patterns of ionization and excitation energies. Their excitation energies differ by more than 1 eV, in contradiction to the experimental report [Rocha-Rinza et al., J. Phys. Chem. A 113, 9442 (2009)]. The calculations confirm metastable (autoionizing) character of the valence excited states of both phenolate and carboxylate isomers of p-CA(-) in the gas phase. The type of resonance is different in the two forms. In the phenolate, the excited state lies above the detachment continuum (a shape resonance), whereas in the carboxylate the excited π→π(*) state lies below the π-orbital ionization continuum, but is above the states derived from ionization from three other orbitals (Feshbach resonance). The computed oscillator strength of the bright electronic state in the phenolate is higher than in the carboxylate, in agreement with Hu?ckel's model predictions. The analysis of photofragmentation channels shows that the most probable products for the methylated derivatives of the phenolate and carboxylate forms of p-CA(-) are CH(3), CH(2)O and CH(3), CH(2)O, CO(2), respectively, thus suggesting an experimental probe that may discriminate between the two isomers.  相似文献   

20.
The first paramagnetic 4d transition-metal complex with a redox-active tetrathiafulvalene ligand has been synthesized. The preparation, X-ray structure, electrochemistry, and electron paramagnetic resonance measurements of [Ru(salen)(PPh3)(TTF-CH=CH-Py)](BF4) [1(BF4)] are reported. The crystal structure reveals that the paramagnetic Ru(III) (s = 1/2) center is in a tetragonally elongated octahedral geometry and the TTF-CH=CH-Py ligand is coordinated to the axial position of the Ru(III) ion through the nitrogen atom of the pyridine group. Thus, 1(BF4) is an attractive precursor to study future pi-4d interactions in dual-property conducting and magnetic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号