首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Current systems for similarity-based virtual screening use similarity measures in which all the fragments in a fingerprint contribute equally to the calculation of structural similarity. This paper discusses the weighting of fragments on the basis of their frequencies of occurrence in molecules. Extensive experiments with sets of active molecules from the MDL Drug Data Report and the World of Molecular Bioactivity databases, using fingerprints encoding Tripos holograms, Pipeline Pilot ECFC_4 circular substructures and Sunset Molecular keys, demonstrate clearly that frequency-based screening is generally more effective than conventional, unweighted screening. The results suggest that standardising the raw occurrence frequencies by taking the square root of the frequencies will maximise the effectiveness of virtual screening. An upper-bound analysis shows the complex interactions that can take place between representations, weighting schemes and similarity coefficients when similarity measures are computed, and provides a rationalisation of the relative performance of the various weighting schemes.  相似文献   

3.
4.
We developed a novel approach called SHAFTS (SHApe-FeaTure Similarity) for 3D molecular similarity calculation and ligand-based virtual screening. SHAFTS adopts a hybrid similarity metric combined with molecular shape and colored (labeled) chemistry groups annotated by pharmacophore features for 3D similarity calculation and ranking, which is designed to integrate the strength of pharmacophore matching and volumetric overlay approaches. A feature triplet hashing method is used for fast molecular alignment poses enumeration, and the optimal superposition between the target and the query molecules can be prioritized by calculating corresponding "hybrid similarities". SHAFTS is suitable for large-scale virtual screening with single or multiple bioactive compounds as the query "templates" regardless of whether corresponding experimentally determined conformations are available. Two public test sets (DUD and Jain's sets) including active and decoy molecules from a panel of useful drug targets were adopted to evaluate the virtual screening performance. SHAFTS outperformed several other widely used virtual screening methods in terms of enrichment of known active compounds as well as novel chemotypes, thereby indicating its robustness in hit compounds identification and potential of scaffold hopping in virtual screening.  相似文献   

5.
6.
7.
An analysis method termed similarity search profiling has been developed to evaluate fingerprint-based virtual screening calculations. The analysis is based on systematic similarity search calculations using multiple template compounds over the entire value range of a similarity coefficient. In graphical representations, numbers of correctly identified hits and other detected database compounds are separately monitored. The resulting profiles make it possible to determine whether a virtual screening trial can in principle succeed for a given compound class, search tool, similarity metric, and selection criterion. As a test case, we have analyzed virtual screening calculations using a recently designed fingerprint on 23 different biological activity classes in a compound source database containing approximately 1.3 million molecules. Based on our predefined selection criteria, we found that virtual screening analysis was successful for 19 of 23 compound classes. Profile analysis also makes it possible to determine compound class-specific similarity threshold values for similarity searching.  相似文献   

8.
Similarity-based methods for virtual screening are widely used. However, conventional searching using 2D chemical fingerprints or 2D graphs may retrieve only compounds which are structurally very similar to the original target molecule. Of particular current interest then is scaffold hopping, that is, the ability to identify molecules that belong to different chemical series but which could form the same interactions with a receptor. Reduced graphs provide summary representations of chemical structures and, therefore, offer the potential to retrieve compounds that are similar in terms of their gross features rather than at the atom-bond level. Using only a fingerprint representation of such graphs, we have previously shown that actives retrieved were more diverse than those found using Daylight fingerprints. Maximum common substructures give an intuitively reasonable view of the similarity between two molecules. However, their calculation using graph-matching techniques is too time-consuming for use in practical similarity searching in larger data sets. In this work, we exploit the low cardinality of the reduced graph in graph-based similarity searching. We reinterpret the reduced graph as a fully connected graph using the bond-distance information of the original graph. We describe searches, using both the maximum common induced subgraph and maximum common edge subgraph formulations, on the fully connected reduced graphs and compare the results with those obtained using both conventional chemical and reduced graph fingerprints. We show that graph matching using fully connected reduced graphs is an effective retrieval method and that the actives retrieved are likely to be topologically different from those retrieved using conventional 2D methods.  相似文献   

9.
The concept of chemical space is of fundamental importance for chemoinformatics research. It is generally thought that high-dimensional space representations are too complex for the successful application of many compound classification or virtual screening methods. Here, we show that a simple "activity-centered" distance function is capable of accurately detecting molecular similarity relationships in "raw" chemical spaces of high dimensionality.  相似文献   

10.
In this work, we calculated the pair wise chemical similarity for a subset of small molecules screened against the NCI60 cancer cell line panel. Four different compound similarity calculation methods were used: Brutus, GRIND, Daylight and UNITY. The chemical similarity scores of each method were related to the biological similarity data set. The same was done also for combinations of methods. In the end, we had an estimate of biological similarity for a given chemical similarity score or combinations thereof. The data from above was used to identify chemical similarity ranges where combining two or more methods (data fusion) led to synergy. The results were also applied in ligand-based virtual screening using the DUD data set. In respect to their ability to enrich biologically similar compound pairs, the ranking of the four methods in descending performance is UNITY, Daylight, Brutus and GRIND. Combining methods resulted always in positive synergy within a restricted range of chemical similarity scores. We observed no negative synergy. We also noted that combining three or four methods had only limited added advantage compared to combining just two. In the virtual screening, using the estimated biological similarity for ranking compounds produced more consistent results than using the methods in isolation.  相似文献   

11.
We present a ligand-based virtual screening technique (PhAST) for rapid hit and lead structure searching in large compound databases. Molecules are represented as strings encoding the distribution of pharmacophoric features on the molecular graph. In contrast to other text-based methods using SMILES strings, we introduce a new form of text representation that describes the pharmacophore of molecules. This string representation opens the opportunity for revealing functional similarity between molecules by sequence alignment techniques in analogy to homology searching in protein or nucleic acid sequence databases. We favorably compared PhAST with other current ligand-based virtual screening methods in a retrospective analysis using the BEDROC metric. In a prospective application, PhAST identified two novel inhibitors of 5-lipoxygenase product formation with minimal experimental effort. This outcome demonstrates the applicability of PhAST to drug discovery projects and provides an innovative concept of sequence-based compound screening with substantial scaffold hopping potential.  相似文献   

12.
With the development of computer technology, computer-aided drug design (CADD) has become an important means for drug research and development, and its representative method is virtual screening. Various virtual screening platforms have emerged in an endless stream and play great roles in the field of drug discovery. With the increasing number of compound molecules, virtual screening platforms face two challenges: low fluency and low visibility of software operations. In this article, we present an integrated and graphical drug design software eSHAFTS based on three-dimensional (3D) molecular similarity to overcome these shortcomings. Compared with other software, eSHAFTS has four main advantages, which are integrated molecular editing and drawing, interactive loading and analysis of proteins, multithread and multimode 3D molecular similarity calculation, and multidimensional information visualization. Experiments have verified its convenience, usability, and reliability. By using eSHAFTS, various tasks can be submitted and visualized in one desktop software without locally installing any dependent plug-ins or software. The software installation package can be downloaded for free at http://lilab.ecust.edu.cn/home/resource.html . © 2019 Wiley Periodicals, Inc.  相似文献   

13.
14.
15.
This paper discusses the use of several rank-based virtual screening methods for prioritizing compounds in lead-discovery programs, given a training set for which both structural and bioactivity data are available. Structures from the NCI AIDS data set and from the Syngenta corporate database were represented by two types of fragment bit-string and by sets of high-level molecular features. These representations were processed using binary kernel discrimination, similarity searching, substructural analysis, support vector machine, and trend vector analysis, with the effectiveness of the methods being judged by the extent to which active test set molecules were clustered toward the top of the resultant rankings. The binary kernel discrimination approach yielded consistently superior rankings and would appear to have considerable potential for chemical screening applications.  相似文献   

16.
Traditional drug development is a slow and costly process that leads to the production of new drugs. Virtual screening (VS) is a computational procedure that measures the similarity of molecules as one of its primary tasks. Many techniques for capturing the biological similarity between a test compound and a known target ligand have been established in ligand-based virtual screens (LBVSs). However, despite the good performances of the above methods compared to their predecessors, especially when dealing with molecules that have structurally homogenous active elements, they are not satisfied when dealing with molecules that are structurally heterogeneous. The main aim of this study is to improve the performance of similarity searching, especially with molecules that are structurally heterogeneous. The Siamese network will be used due to its capability to deal with complicated data samples in many fields. The Siamese multi-layer perceptron architecture will be enhanced by using two similarity distance layers with one fused layer, then multiple layers will be added after the fusion layer, and then the nodes of the model that contribute less or nothing during inference according to their signal-to-noise ratio values will be pruned. Several benchmark datasets will be used, which are: the MDL Drug Data Report (MDDR-DS1, MDDR-DS2, and MDDR-DS3), the Maximum Unbiased Validation (MUV), and the Directory of Useful Decoys (DUD). The results show the outperformance of the proposed method on standard Tanimoto coefficient (TAN) and other methods. Additionally, it is possible to reduce the number of nodes in the Siamese multilayer perceptron model while still keeping the effectiveness of recall on the same level.  相似文献   

17.
Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.  相似文献   

18.
19.
In this review, we discuss a number of computational methods that have been developed or adapted for molecule classification and virtual screening (VS) of compound databases. In particular, we focus on approaches that are complementary to high-throughput screening (HTS). The discussion is limited to VS methods that operate at the small molecular level, which is often called ligand-based VS (LBVS), and does not take into account docking algorithms or other structure-based screening tools. We describe areas that greatly benefit from combining virtual and biological screening and discuss computational methods that are most suitable to contribute to the integration of screening technologies. Relevant approaches range from established methods such as clustering or similarity searching to techniques that have only recently been introduced for LBVS applications such as statistical methods or support vector machines. Finally, we discuss a number of representative applications at the interface between VS and HTS.  相似文献   

20.
Natural products (NPs) have been optimized in a very long natural selection process for optimal interactions with biological macromolecules. NPs are therefore an excellent source of validated substructures for the design of novel bioactive molecules. Various cheminformatics techniques can provide useful help in analyzing NPs, and the results of such studies may be used with advantage in the drug discovery process. In the present study we describe a method to calculate the natural product-likeness score--a Bayesian measure which allows for the determination of how molecules are similar to the structural space covered by natural products. This score is shown to efficiently separate NPs from synthetic molecules in a cross-validation experiment. Possible applications of the NP-likeness score are discussed and illustrated on several examples including virtual screening, prioritization of compound libraries toward NP-likeness, and design of building blocks for the synthesis of NP-like libraries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号