首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 480 毫秒
1.
The surface pressure-area isotherm of a cysteinyl peptidolipid on a pure water subphase (pH 5.8) was compared with that on a water subphase saturated with oxygen and buffered with ammonium bicarbonate (pH 7.8). A reduction of the limiting molecular area was observed for the isotherm measured on the subphase saturated with oxygen. Hysteresis in the compression-decompression cycles of the Langmuir film was also observed. Taking into consideration the chemical structure of the peptidolipid, we rationalized that the free sulfhydryl groups of the peptidolipid were oxidized in the presence of oxygen in the alkaline subphase to form intermolecular disulfide bonds at the air-water interface. The surface topography of the peptidolipid Langmuir film was observed by epi-fluorescence microscopy and the Langmuir-Blodgett film by environmental scanning electron microscopy (ESEM). The micrographs showed evidence of the polymerization of the cysteinyl peptidolipid at the air-water interface. Furthermore, the XPS spectra of the Langmuir-Blodgett films also proved the existence of disulfide bonds. The control peptidolipid C(18)-Ser-Gly-Ser-OH showed identical surface pressure-area isotherms in the presence or absence of an oxygen-saturated subphase.  相似文献   

2.
Study of the aggregation of human insulin Langmuir monolayer   总被引:1,自引:0,他引:1  
The human insulin (HI) Langmuir monolayer at the air-water interface was systematically investigated in the presence and absence of Zn(II) ions in the subphase. HI samples were dissolved in acidic (pH 2) and basic (pH 9) aqueous solutions and then spread at the air-water interface. Spectroscopic data of aqueous solutions of HI show a difference in HI conformation at different pH values. Moreover, the dynamics of the insulin protein showed a dependence on the concentration of Zn(II) ions. In the absence of Zn(II) ions in the subphase, the acidic and basic solutions showed similar behavior at the air-water interface. In the presence of Zn(II) ions in the subphase, the surface pressure-area and surface potential-area isotherms suggest that HI may aggregate at the air-water interface. It was observed that increasing the concentration of Zn(II) ions in the acidic (pH 2) aqueous solution of HI led to an increase of the area at a specific surface pressure. It was also seen that the conformation of HI in the basic (pH 9) medium had a reverse effect (decrease in the surface area) with the increase of the concentration of Zn(II) ions in solution. From the compression-decompression cycles we can conclude that the aggregated HI film at air-water interface is not stable and tends to restore a monolayer of monomers. These results were confirmed from UV-vis and fluorescence spectroscopy analysis. Infrared reflection-absorption and circular dichroism spectroscopy techniques were used to determine the secondary structure and orientation changes of HI by zinc ions. Generally, the aggregation process leads to a conformation change from α-helix to β-strand and β-turn, and at the air-water interface, the aggregation process was likewise seen to induce specific orientations for HI in the acidic and basic media. A proposed surface orientation model is presented here as an explanation to the experimental data, shedding light for further research on the behavior of insulin as a Langmuir monolayer.  相似文献   

3.
The monolayer properties of some single-chain polyprenyl phosphates (phytanyl, phytyl, and geranylgeranyl phosphates), which we regard as hypothetical primitive membrane lipids, were investigated at the air-water interface by surface pressure-area (pi-A) isotherm measurements. The molecular area/ pressure at various pH conditions dependence revealed the acid dissociation constants (pKa values) of the phosphate. The pKa values thus obtained at the air-water interface (pKa1 = 7.1 and pKa2 = 9.4 for phytanyl phosphate) were significantly shifted to higher pH than those observed in the bilayer state in water (pKa1 = 2.9 and pKa2 = 7.8). The difference in pKa values leads to a stability of the phosphate as both monolayer and bilayer states in a pH range of 2-6. In addition, the presence of ions such as sodium, magnesium, calcium, and lanthanum in the subphase significantly altered the stability of the polyprenyl phosphate monolayers, as shown by the determination of monolayer collapse and compression/expansion hysteresis. Although sodium ions in the subphase showed only a weak effect on the stabilization of the monolayer, addition of magnesium ions or of a small amount of calcium ions significantly suppressed the dissolution of the monolayer into the subphase and increased its mechanical stability against collapse. In contrast, the presence of larger amounts of calcium or of lanthanum ions induced collapse of the monolayers. Based on these experimental facts, a plausible scenario for the formation of primitive cell membrane by transformation of a monolayer to vesicle structures is proposed.  相似文献   

4.
We report on the reduction of aqueous chloroaurate ions by glucose to form gold nanoparticles of uniform size. We further demonstrate the complexation of these particles with octadecylamine (ODA) monolayers at the air-water interface. Pressure-area (pi-A) isotherms as a function of time of complexation revealed a significant expansion of the monolayer. Surface pressure variation with time for constant areas after spreading of the monolayer was carried out to observe the kinetics of complexation of the colloidal particles at the interface. The kinetics of complexation of the particles at the interface was also monitored by Brewster angle microscopy (BAM) measurements. Langmuir-Blodgett films of the particles complexed with ODA were formed at a subphase pH of 9 onto different substrates. Quartz crystal microgravimetry (QCM) was used to quantify the amount of particles deposited per immersion cycle of the quartz crystal. The LB films were further characterized by UV-vis and transmission electron microscopy (TEM) measurements. TEM measurements indicate a close packed and equidistant arrangement of colloidal particles in the LB film, probably due to hydrogen-bonding interactions.  相似文献   

5.
The monolayer properties of p-tert-butylthiacalix[4]arene (TCA) at the air-water interface was investigated by the measurements of surface pressure-area isotherms. However, TCA only exists as a trimmer aggregate on the subphase of deionized water. Copper(II) ion in the subphase can induce the monolayer formation of TCA. The UV-Vis spectra and FTIR spectra of the transferred films suggested that the monolayer forrmation was fulfilled through the coordination of copper(II) ion to TCA at the air-water surface.  相似文献   

6.
Spectra of octadecylamine (ODA) Langmuir monolayers and egg phosphatidylcholine (PC)/ODA-mixed monolayers at the air-water interface have been acquired. The organization of the monolayers has been characterized by surface pressure-area isotherms. Application of polarized optical microscopy provides further insight in the domain structures and interactions of the film components. Surface-enhanced Raman scattering (SERS) data indicate that enhancement in Raman spectra can be obtained by strong interaction between headgroups of the surfactants and silver particles in subphase. By mixing ODA with phospholipid molecules and spreading the mixture at the air-water interface, we acquired vibrational information of phospholipid molecules with surfactant-aided SERS effect.  相似文献   

7.
The interaction between bovine serum albumin (BSA) and the anionic 1.2-dipalmitoyl-snglycero- 3-(phospho-rac-(1-glycerol)) (sodium salt) (DPPG) phospholipid at different subphase pH values was investigated at air-water interface through surface pressure measurements and atomic force microscopy (AFM) observation. By analyzing surface pressure-mean molecular area (π-A) isotherms, the limiting molecular area in the closed packing state-the concentration of BSA (Alim-[BSA]) curves, the compressibility coefficient-surface pressure (CS-1-π) curves and the difference value of mean molecular area-the concentration of BSA (ΔA-[BSA]) curves, we obtained that the mean molecular area of DPPG monolayer became much larger when the concentration of BSA in the subphase increased at pH=3 and 5. But the isotherms had no significant change at different amount of BSA at pH=10. In addition, the amount of BSA molecules adsorbed onto the lipid monolayer reached a threshold value when [BSA]>5×10-8 mol/L for all pHs. From the surface pressure-time (π-t) data, we obtained that desorption and adsorption processes occurred at pH=3, however, there was only desorption process occurring at pH=5 and 10. These results showed that the interaction mechanism between DPPG and BSA molecules was affected by the pH of subphase. BSA molecules were adsorbed onto the DPPG monolayers mainly through the hydrophobic interaction at pH=3 and 5, and the strength of hydrophobic interaction at pH=3 was stronger than the case of pH=5. At pH=10, a weaker hydrophobic interaction and a stronger electrostatic repulsion existed between DPPG and BSA molecules. AFM images revealed that the pH of subphase and [BSA] could affect the morphology features of the monolayers, which was consistent with these curves. The study provides an important experimental basis and theoretical support to understand the interaction between lipid and BSA at the air-water interface.  相似文献   

8.
Surface pressure and surface potential-area isotherms were used to characterize a lysozyme Langmuir monolayer. The compression-decompression cycles and stability measurements showed a homogeneous and stable monolayer at the air-water interface. Salt concentration in the subphase and pH of the subphase were parameters controlling the homogeneity and stability of the Langmuir monolayer. In situ UV-vis and fluorescence spectroscopies were used to verify the homogeneity of the lysozyme monolayer and to identify the chromophore residues in the lysozyme. Optimal experimental conditions were determined to prepare a homogeneous and stable lysozyme Langmuir monolayer.  相似文献   

9.
Various amino acid-carrying amphiphiles were synthesized, and the pK values of the attached amino acid residues were investigated at the air-water interface and in aqueous vesicles using pi-A isotherm measurements, (1)H NMR titration, and IR spectroscopy in reflection-adsorption mode. The epsilon-amino group of the Lys residue embedded at the air-water interface displays a significant pK shift (4 or 5 unit) compared with that observed in bulk water, while the pK shift in aqueous vesicles was not prominent (ca. 1 unit). Moreover, pK values of the amino acids at the air-water interface can be tuned simply by control of the subphase ionic strength as well as by molecular design of the amphiphiles. A simple equation based on the dominant contribution by the electrostatic energy to the pK shift reproduces well the surface pressure difference between protonated and unprotonated species, suggesting a reduction in the apparent dielectric constant at the air-water interface. Hydrolysis of a p-nitrophenyl ester derivative was used as a model reaction to demonstrate the use of the Lys-functionalized monolayer. Efficient hydrolysis was observed, even at neutral pH, after tuning of pK for the Lys residue in the monolayer, which is a similar case to that occurring in biological catalysis.  相似文献   

10.
Up to now, the investigations of the chemistry of biliverdin and its analogs has been limited in organic solvents1-4. There is no report on organized molecular films of biliverdin and its derivatives. The structural organization and biophysical properties of biliverdin molecules in ordered molecular assemblies might be different from those in organic solvents, but similar to those in biological membranes in mammals. Therefore, biliverdin or its derivatives incorporated in ordered molecular fil…  相似文献   

11.
We show that two dips of an oxidized silicon substrate through a prepolymerized n-octadecylsiloxane monolayer at an air-water interface in a rapid succession produces periodic, linear striped patterns in film morphology extending over macroscopic area of the substrate surface. Langmuir monolayers of n-octadecyltrimethoxysilane were prepared at the surface of an acidic subphase (pH 2) maintained at room temperature (22 +/- 2 degrees C) under relative humidities of 50-70%. The substrate was first withdrawn at a high dipping rate from the quiescent aqueous subphase (upstroke) maintained at several surface pressures corresponding to a condensed monolayer state and lowered soon after at the same rate into the monolayer covered subphase (downstroke). The film structure and morphology were characterized using a combination of optical microscopy, imaging ellipsometry, and Fourier transform infrared spectroscopy. An extended striped pattern, perpendicular to the pushing direction of the second stroke, resulted for all surface pressures when the dipping rate exceeded a threshold value of 40 mm min(-1). Below this threshold value, uniform deposition characterizing formation of a bimolecular film was obtained. Under conditions that favored striped deposition during the downstroke through the monolayer-covered interface, we observed a periodic auto-oscillatory behavior of the meniscus. The stripes appear to be formed by a highly correlated reorganization and/or exchange of the first monolayer, mediated by the Langmuir monolayer at the air-water interface. This mechanism appears distinctly different from nanometer scale stripes observed recently in single transfers of phospholipid monolayers maintained near a phase boundary. The stripes further exhibit wettability patterns useful for spatially selective functionalization, as demonstrated by directed adsorptions of an organic dye (fluorescein) and an oil (hexadecane).  相似文献   

12.
The transmetalation reaction between a sacrificial nanoparticle and more noble metal ions in solution has emerged as a novel method for creating unique hollow and bimetallic nanostructures. In this report, we investigate the possibility of carrying out the transmetalation reaction between hydrophobic silver nanoparticles assembled and constrained at the air-water interface and subphase gold ions. We observe that facile reduction of the subphase gold ions by the sacrificial silver nanoparticles occurs resulting in the formation of elongated gold nanostructures that appear to cross-link the sacrificial silver particles. This transmetalation reaction may be modulated by the insertion of an electrostatic barrier in the form of an ionizable lipid monolayer between the silver nanoparticles and the aqueous gold ions that impacts the gold nanoparticle assembly. Transmetalation reactions between nanoparticles constrained into a close-packed structure and appropriate metal ions could lead to a new strategy for metallic cross-linking of nanoparticles and generation of coatings with promising optoelectonic behavior.  相似文献   

13.
Colloid sorption onto air-water interfaces in a variety of natural environments has been previously recognized, but better quantification and understanding is still needed. Affinities of clay colloids for the air-water interface were measured using a bubble-column method and reported as partition coefficients (K). Four types of dilute clay suspensions were measured in NaCl solutions under varying pH and ionic strength conditions: kaolinite KGa-1, illite IMt-2, montmorillonite SWy-2, and bentonite. The K values of three types of polystyrene latex particles with different surface-charge properties were also measured for comparison. Kaolinite exhibited extremely high affinity to the air-water interface at pH values below 7. Illite has lower affinity to air-water interfaces than kaolinite, but has similar pH dependence. Na-montmorillonite and bentonite clay were found excluded from the air-water interface at any given pH and ionic strength. Positively and negatively charged latex particles exhibited sorption and exclusion, respectively, at the air-water interface. These results show the importance of electrostatic interactions between the air-water interface and colloids, especially the influence of pH-dependent edge charges, and influence of particle shape.  相似文献   

14.
The self-assembly and supramolecular engineering of porphyrins into ordered arrays have recently attracted much interest because of their promising application potential in molecular and electronic devices, spintronics, energy harvesting and storage, catalysis, and sensor development. We herein report the synthesis and supramolecular self-assembly study of a novel porphyrin molecule, 2Por-TAZ, in Langmuir and Langmuir-Blodgett films. The 2Por-TAZ molecule contains two porphyrin macrocycles attached to a triaminotriazine headgroup. Triaminotriazines are known to form a highly ordered linear supramolecular self-assembly through complementary hydrogen bonding with barbituric acid molecules at the air-water interface. Surface pressure-area isotherm measurements and polarized UV-vis absorption spectroscopic studies indicate that the 2Por-TAZ molecules adopted an edge-on orientation at the air-water interface. Polarized UV-vis absorption study also revealed that the 2Por-TAZ molecules formed linear supramolecular networks on pure water and barbituric acid subphase with porphyrin flat planes facing toward the compression direction. The binding of barbituric acid with 2Por-TAZ molecules was observed from the expansion of the Langmuir monolayer film. Compared to the transferred LB film from pure water subphase, both the UV-vis absorbance and fluorescence emission intensity of the LB film transferred from barbituric acid subphase increased significantly.  相似文献   

15.
Monodisperse colloidal silica particles were prepared by the St?ber method and hydrophobized by grafting a silane coupling agent, octadecyltrimethoxysilane. Two different types of silica particles, i.e., hydrophilic and hydrophobic silica particles were spread at the air/water interface to form the Langmuir monolayers. Monolayer properties of those particles were investigated by measuring surface pressure–area (π–A) isotherms at different subphase pH. At pH above the isoelectric point (IEP) of silica, as pH increased the π–A isotherms for the hydrophobic particles slightly shifted to larger surface area whereas those for the hydrophilic particles showed a reverse trend. At pH below the IEP, the π–A isotherms for both types of particles shifted to much larger surface area with different shapes. In order to analyze the π–A isotherm results further, the time dependence of π was examined. When pH is above the IEP, the π for the hydrophilic particles significantly decreased with increasing time and it did more at higher pH. On the other hand, the decrease in π for the hydrophobic particles was insignificant regardless of pH. For both types of silica particles, the decrease in π was minimal at pH below the IEP. These results were discussed in terms of particle desorption into the water subphase and interparticle electrostatic repulsion which is directly influenced by zeta potential.  相似文献   

16.
The peptide corresponding to the sequence (279-298) of the Hepatitis G virus (HGV/GBV-C) E2 protein was synthesized, and surface activity measurements, pi-A compression isotherms, and penetration of E2(279-298) into phospholipid monolayers spread at the air-water interface were carried out on water and phosphate buffer subphases. The results obtained indicated that the pure E2(279-298) Langmuir monolayer exhibited a looser packing on saline-buffered than on pure water subphase and suggest that the increase in subphase ionic strength stabilizes the peptide monolayer. To better understand the topography of the monolayer, Brewster angle microscopy (BAM) images of pure peptide monolayers were obtained. Penetration of the peptide into the pure lipid monolayers of dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) and into mixtures of dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DMPC/DMPG) at various initial surface pressures was investigated to determine the ability of these lipid monolayers to host the peptide. The higher penetration of peptide into phospholipids is attained when the monolayers are in the liquid expanded state, and the greater interaction is observed with DMPC. Furthermore, the penetration of the peptide dissolved in the subphase into these various lipid monolayers was investigated to understand the interactions between the peptide and the lipid at the air-water interface. The results obtained showed that the lipid acyl chain length is an important parameter to be taken into consideration in the study of peptide-lipid interactions.  相似文献   

17.
The secondary structure of the organophosphorus acid anhydrolase (OPAA) Langmuir monolayer in the absence and presence of diisopropylfluorophosphate (DFP) in the subphase was studied by infrared reflection-absorption spectroscopy (IRRAS) and polarization-modulated IRRAS (PM-IRRAS). The results of both the IRRAS and the PM-IRRAS indicated that the alpha-helix and the beta-sheet conformations in OPAA were parallel to the air-water interface at a surface pressure of 0 mN.m-1 in the absence of DFP in the subphase. When the surface pressure increased, the alpha-helix and the beta-sheet conformations became tilted. When DFP was added to the subphase at a concentration of 1.1 x 10(-5) M, the alpha-helix conformation of OPAA was still parallel to the air-water interface, whereas the beta-sheet conformation was perpendicular at 0 mN.m-1. The orientations of both the alpha-helix and the beta-sheet conformations did not change with the increase of surface pressure. The shape of OPAA molecules is supposed to be elliptic, and the long axis of OPAA was parallel to the air-water interface in the absence of DFP in the subphase, whereas the long axis became perpendicular in the presence of DFP. This result explains the decrease of the limiting molecular area of the OPAA Langmuir monolayer when DFP was dissolved in the subphase.  相似文献   

18.
The liposome surface is modeled by a 2-D lipid monolayer made of behenic acid forming a negatively charged interface. The properties at the air/liquid interface were examined by pressure-area isotherms in a Langmuir trough introducing diluted chitosan solution in the subphase. X-ray reflectivity of the interface was measured in the same conditions in order to determine the layer thickness of the chitosan adsorbed on the behenic acid monolayer formed on water. Influence of pH of the subphase and molecular weight of adsorbed chitosan was investigated. All these results allow confirming that the charge and the stability of the lipid layer are controlled by the nature of the polyelectrolyte and the nature of the medium. In particular, the use of biocompatible charged polysaccharides is of interest for biomedical applications.  相似文献   

19.
20.
Polystyrene (PS) latex particles carrying pH-responsive poly[2-(diethylamino)ethyl methacrylate] (PDEA) hair (PDEA-PS particles) were synthesized by dispersion polymerization and characterized in terms of diameter, diameter distribution, morphology, chemical composition, surface chemistry, and pH-response using scanning electron microscopy (SEM), elemental microanalysis, (1)H nuclear magnetic resonance spectroscopy, the laser diffraction method, and zeta potential measurements. The hairy particles can act as pH-responsive stabilizers of aqueous foams by adsorption at the air-water surface. Above pH 8.0, where particles have nonprotonated PDEA hair, which is relatively hydrophobic, particle-stabilized foams are stable for at least 1 month. Optical microscopy and SEM confirmed that flocculated PDEA-PS latex particles were adsorbed at the air-water interface and stabilized the aqueous foams. At pH 6.1 and 7.1, relatively stable foams can be prepared that remain stable for at least 24 h. SEM studies indicated that the PDEA-PS particles were adsorbed at the air-water interface as a monolayer at pH 6.1. At pH 5.1 and 3.1, where the particles have cationic water-soluble PDEA hairs with hydrophilic character, no foam was formed. Rapid defoamation can be induced by lowering the solution pH; the addition of acid caused the in situ protonation of 2-(diethylamino)ethyl methacrylate residues, which impart water-soluble hydrophilic character to the PDEA hair, and the PDEA-PS particles desorbed from the air-water interface. The foaming and defoaming cycles could be repeated at least five times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号