首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mononuclear complexes [Pt(bzq)(S^S)] [S^S = pyrrolidinedithiocarbamate (pdtc 1), dimethyldithiocarbamate (dmdtc 2)] were prepared by reaction of [Pt(bzq)(NCMe)(2)]ClO(4) with an equimolecular amount of [NH(4)(pdtc)] and [Na(dmdtc)·2H(2)O] respectively in MeOH. Reactions of 1 and 2 with AgClO(4) in 1 : 1 and 2 : 1 molar ratios rendered the heteropolinuclear compounds [{Pt(bzq)(S^S)Ag}(2)](ClO(4))(2) (S^S = pdtc 3, dmdtc 4) and [{Pt(bzq)(S^S)}(2)Ag](ClO(4)) (S^S = pdtc 5, dmdtc 6) respectively. The X-ray studies on single crystals of 3 and 4 showed that both consist of tetranuclear [Pt(2)Ag(2)] clusters with the Pt-Ag and the Ag-Ag distances in the range of those corresponding to Pt-Ag dative bonds and argentophilic interactions. In 3 the tetranuclear [Pt(2)Ag(2)] clusters are connected into infinite polymeric chains by Pt···Pt metallophilic interactions (Pt···Pt = 3.1890(7) ?). The X-ray study on a single crystal of 5 showed that it is a polymer based on trinuclear [Pt(2)Ag] clusters containing two unsupported Pt-Ag dative bonds and connected by Ag-S bonds in such a way that the "Pt-Ag-S-Pt-Ag-S" atoms draw a zigzag polymeric chain. TD-DFT calculations carried out for 1 indicate that the lowest energy absorption band in CH(2)Cl(2) can be described as a mixture of (1)MLCT, (1)IL and (1)L'LCT transitions. Powdered samples of 1 at 298 K and 77 K show a green-yellow emission band coming mainly from a (3)LC excited state. However complex 2 shows "luminescence thermochromism": the colour of its luminescence changes from green-yellow at 77 K to orange-red at 298 K. The emission of the Pt-Ag clusters, 3-6, in the solid state, are due to excimeric (3)ππ and/or (3)MMLCT (dσ* →π*) low-lying excited states, indicating that the presence of silver in the clusters makes the "Pt(bzq)(S^S)" fragments interact to a large extent through Pt···Pt and/or π-π interactions. Solid 3 is a highly selective vapochromic compound towards acetonitrile although this behaviour is not fully reversible.  相似文献   

2.
A series of mononuclear cyclometalated benzo[h]quinolinate platinum and palladium(II) complexes with phosphine ligands, namely, [M(bzq)ClL] (L=PPh2H, Pt 1, Pd 2; PPh2CCPh, Pt 3, Pd 4), [Pt(bzq)(PPh2H)(PPh2CCPh)]ClO4 5, [Pt(bzq)(PPh2C(Ph)=C(H)PPh2)]ClO4 6, and [Pt(bzq)(CCPh)(PPh2CCPh)] (7a, 7b), were synthesized. The X-ray crystal structures of 1, 6.CH3COCH3.1/2CH3(CH2)4CH3, and 7b.CH3COCH3 have been determined. In 1, the metalated carbon atom and the P atom are mutually cis, whereas in 7b they are trans located. For complex 6, C and N are crystallographically indistinguishable. Reaction of [Pt(bzq)(mu-Cl)]2 with PPh2H and excess of NEt3 leads to the phosphide-bridge platinum dimer [Pt(bzq)(mu-PPh2)]2 8 (X-ray). Moderate pi-pi intermolecular interactions and no evident Pt-Pt interactions are found in 1, 7b, and in 8. All of the complexes exhibit absorption bands at high energy due to the intraligand transitions (1IL pi --> pi) and absorptions at lower energy which are attributed to MLCT (5d) pi --> pi (CLambdaN) transition. Platinum complexes show strong luminescence in both solid state and frozen solutions. The influence of the coligands on the photophysics of the platinum complexes has been examined by absorption and emission spectroscopy.  相似文献   

3.
Reactions of lithium complexes of the bulky guanidinates [{(Dip)N}(2)CNR(2)](-) (Dip=C(6)H(3)iPr(2)-2,6; R=C(6)H(11) (Giso(-)) or iPr (Priso(-)), with NiBr(2) have afforded the nickel(II) complexes [{Ni(L)(μ-Br)}(2)] (L=Giso(-) or Priso(-)), the latter of which was crystallographically characterized. Reduction of [{Ni(Priso)(μ-Br)}(2)] with elemental potassium in benzene or toluene afforded the diamagnetic species [{Ni(Priso)}(2)(μ-C(6)H(5)R)] (R=H or Me), which were shown, by X-ray crystallographic studies, to possess nonplanar bridging arene ligands that are partially reduced. A similar reduction of [{Ni(Priso)(μ-Br)}(2)] in cyclohexane yielded a mixture of the isomeric complexes [{Ni(μ-κ(1)-N-,η(2)-Dip-Priso)}(2)] and [{Ni(μ-κ(2)-N,N'-Priso)}(2)], both of which were structurally characterized. These complexes were also formed through arene elimination processes if [{Ni(Priso)}(2)(μ-C(6)H(5)R)] (R=H or Me) were dissolved in hexane. In that solvent, diamagnetic [{Ni(μ-κ(1)-N-,η(2)-Dip-Priso)}(2)] was found to slowly convert to paramagnetic [{Ni(μ-κ(2)-N,N'-Priso)}(2)], suggesting that the latter is the thermodynamic isomer. Computational analysis of a model of [{Ni(μ-κ(2)-N,N'-Priso)}(2)] showed it to have a Ni-Ni bond that has a multiconfigurational electronic structure. An analogous copper(I) complex [{Cu(μ-κ(2)-N,N'-Giso)}(2)] was prepared, structurally authenticated, and found, by a theoretical study, to have a negligible Cu···Cu bonding interaction. The reactivity of [{Ni(Priso)}(2)(μ-C(6)H(5)Me)] and [{Ni(μ-κ(2)-N,N'-Priso)}(2)] towards a range of small molecules was examined and this gave rise to diamagnetic complexes [{Ni(Priso)(μ-CO)}(2)] and [{Ni(Priso)(μ-N(3))}(2)]. Taken as a whole, this study highlights similarities between bulky guanidinate ligands and the β-diketiminate ligand class, but shows the former to have greater coordinative flexibility.  相似文献   

4.
The reaction between (NBu(4))[Pt(bzq)(C(6)F(5))(2)] (1, bzq = 7,8-benzoquinolate) and AgClO(4) in a 1 : 1 molar ratio, in acetone, gives the polymer [{Pt(bzq)(C(6)F(5))(2)}Ag](n) (2). The reaction of 2 with equimolecular amounts of PPh(3) and SC(4)H(8) (tht) produces the bimetallic complexes [{Pt(bzq)(C(6)F(5))(2)}AgL] (L = PPh(3) (3), tht (4)). For L = py, decomposition takes place and [Pt(bzq)(C(6)F(5))py] (5) is obtained. All these complexes have been characterized by X-ray diffraction. The most interesting features of complexes 2-4 is the presence of Pt-Ag bonds, with Pt-Ag distances of ca. 2.75 ?. Besides, the silver centres establish short η(1) bonding interactions with the C(ipso) of the bzq ligands, with distances Ag-C of ca. 2.45 ?. Complex 2 is a one-dimensional infinite chain in which the fragments "Pt(bzq)(C(6)F(5))(2)(-)" and Ag(+) alternate. On the other hand, complexes 1 and 3-5 show intermolecular pairing through π···π interactions between the aromatic rings of the bzq ligand, having interplanar separations of ca. 3.5 ?. Complex 2 dissolves in donor solvents (acetone, THF) as discrete bimetallic solvated fragments [{Pt(bzq)(C(6)F(5))(2)}AgS(n)] (S = solvent), similar to complexes 3 and 4. The persistence of the Pt-Ag bond in 2-4, supported by multinuclear NMR spectroscopy, causes a significant blue-shift in the lowest-lying absorption in relation to 1. This fact is attributed (TD-DFT) to a remarkable modification of the orbitals contributing to the HOMO, which changes the character of the transition from (1)LC/(1)MLCT in 1 to admixture (1)L'LCT/(1)MLCT in the bimetallic complexes. The low energy feature (490-530 nm) of 2 in solid state is attributed to CT from the Pt fragments to the Ag centers. Complexes 2-4 are only emissive in rigid media (solid and glasses). In the solid state, the metallic chain 2 exhibits a bright orange emission (560 nm, 298 K; 590 nm, 77 K), assigned to an excited state involving charge transfer from the platinum fragment with a remarkable contribution of C(6)F(5) (Ar(f)) rings to the Pt-Ag bond ((3)LMM'CT/(3)L'M'CT). However, 3 and 4 exhibit in solid state at 298 K a vibronic band, which is clearly resolved in two close non-equilibrated bands at 77 K in 3, tentatively ascribed to a mixture of (3)MLCT/(3)L'LCT transitions modified by the formation of the Pt-Ag bond. In glassy solution (77 K) 2-4 display a vibronic emission ascribed primarily to (3)LC character.  相似文献   

5.
A comparison of the solid structures of three novel trinuclear sandwich Pt 2Pb systems (NBu 4) 2[{Pt(C identical withCTol) 4} 2Pb(OH 2) 2] 1, [{Pt(bzq)(C identical withCPh) 2} 2Pb] 2, and (NBu 4)[{Pt(bzq)(C identical withCC 6H 4-CF 3-4) 2} 2Pb(O 2ClO 2)] 4 (NBu 4[ 3.(O 2ClO 2)]) with that of the previously reported (NBu 4) 2[{Pt(C 6F 5) 4} 2Pb] 5 showed that the local environment of Pb (II) is highly sensitive to the nature of the anionic platinate(II) precursors. The photoluminescence (PL) studies of all 1- 5 complexes revealed a dependence of PL on the structure type. Thus, complexes 1 and 5 exhibit metal centered emissions ( 1, 497 nm, 77 K; 5, 539 nm, varphi = 0.43, 298 K) related to the linear ( 5) or bent ( 1 Pt-Pb-Pt 149.9 degrees ) trinuclear entities. However, in complexes 2- 4, that have unprecedented Pb (II)...eta (1)(C identical withCR) bonding interactions and very short Pt...Pb and Pt...Pt distances, the emissive state in solid state (77 K) is attributed to a (3)MLM'CT [Pt(1)pi(C identical withCR)-->Pt(2)/Pb(sp)pi*(C identical withCR)] state mixed with some pipi* excimeric character in neutral complexes 2 (R = Ph) and 3 (R = C 6H 4-CF 3-4), and in the case of the adduct (NBu 4)[{Pt(bzq)(C identical withCC 6H 4-CF 3-4) 2} 2Pb(O 2ClO 2)] 4 modified also by Pb (II)...O (O 2ClO 2 (-)) contacts.  相似文献   

6.
Homo- and heterobimetallic complexes of the form [(PPh(3))(2)(mu(2)-1,8-S(2)-nap){ML(n)}] (in which (1,8-S(2)-nap)=naphtho-1,8-dithiolate and {ML(n)}={PtCl(2)} (1), {PtClMe} (2), {PtClPh} (3), {PtMe(2)} (4), {PtIMe(3)} (5) and {Mo(CO)(4)} (6)) were obtained by the addition of [PtCl(2)(NCPh)(2)], [PtClMe(cod)] (cod=1,5-cyclooctadiene), [PtClPh(cod)], [PtMe(2)(cod)], [{PtIMe(3)}(4)] and [Mo(CO)(4)(nbd)] (nbd=norbornadiene), respectively, to [Pt(PPh(3))(2)(1,8-S(2)-nap)]. Synthesis of cationic complexes was achieved by the addition of one or two equivalents of a halide abstractor, Ag[BF(4)] or Ag[ClO(4)], to [{Pt(mu-Cl)(mu-eta(2):eta(1)-C(3)H(5))}(4)], [{Pd(mu-Cl)(eta(3)-C(3)H(5))}(2)], [{IrCl(mu-Cl)(eta(5)-C(5)Me(5))}(2)] (in which C(5)Me(5)=Cp*=1,2,3,4,5-pentamethylcyclopentadienyl), [{RhCl(mu-Cl)(eta(5)-C(5)Me(5))}(2)], [PtCl(2)(PMe(2)Ph)(2)] and [{Rh(mu-Cl)(cod)}(2)] to give the appropriate coordinatively unsaturated species that, upon treatment with [(PPh(3))(2)Pt(1,8-S(2)-nap)], gave complexes of the form [(PPh(3))(2)(mu(2)-1,8-S(2)-nap){ML(n)}][X] (in which {ML(n)}[X]={Pt(eta(3)-C(3)H(5))}[ClO(4)] (7), {Pd(eta(3)-C(3)H(5))}[ClO(4)] (8), {IrCl(eta(5)-C(5)Me(5))}[ClO(4)] (9), {RhCl(eta(5)-C(5)Me(5))}[BF(4)] (10), {Pt(PMe(2)Ph)(2)}[ClO(4)](2) (11), {Rh(cod)}[ClO(4)] (12); the carbonyl complex {Rh(CO)(2)}[ClO(4)] (13) was formed by bubbling gaseous CO through a solution of 12. In all cases the naphtho-1,8-dithiolate ligand acts as a bridge between two metal centres to give a four-membered PtMS(2) ring (M=transition metal). All compounds were characterised spectroscopically. The X-ray structures of 5, 6, 7, 8, 10 and 12 reveal a binuclear PtMS(2) core with PtM distances ranging from 2.9630(8)-3.438(1) A for 8 and 5, respectively. The napS(2) mean plane is tilted with respect to the PtP(2)S(2) coordination plane, with dihedral angles in the range 49.7-76.1 degrees and the degree of tilting being related to the PtM distance and the coordination number of M. The sum of the Pt(1)coordination plane/napS(2) angle, a, and the Pt(1)coordination plane/M(2)coordination plane angle, b, a+b, is close to 120 degrees in nearly all cases. This suggests that electronic effects play a significant role in these binuclear systems.  相似文献   

7.
The protonation of the phosphinito-bridged Pt(I) complex [(PHCy(2))Pt(μ-PCy(2)){κ(2)P,O-μ-P(O)Cy(2)}Pt(PHCy(2))](Pt-Pt) (1) by aqueous HBF(4) or hydrofluoric acid leads selectively to the hydrido-bridged solvento species syn-[(PHCy(2))(H(2)O)Pt(μ-PCy(2))(μ-H)Pt(PHCy(2)){κP-P(OH)Cy(2)}](Y)(2)(Pt-Pt) ([2-H(2)O]Y(2)) {Y = BF(4), F(HF)(n)} when an excess of acid was used. On standing in halogenated solvents, complex [2-H(2)O](BF(4))(2) undergoes a slow but complete isomerization to [(PHCy(2))(2)Pt(μ-PCy(2))(μ-H)Pt{κP-P(OH)Cy(2)}(H(2)O)](BF(4))(2)(Pt-Pt) ([4-H(2)O][BF(4)](2)) having the P(OH)Cy(2) ligand trans to the hydride. The water molecule coordinated to platinum in [2-H(2)O][BF(4)](2) is readily replaced by halides, nitriles, and triphenylphosphane, and the acetonitrile complex [2-CH(3)CN][BF(4)](2) was characterized by XRD analysis. Solvento species other than aqua complexes, such as [2-acetone-d(6)](2+) or [2-CD(2)Cl(2)](2+) were obtained in solution by the reaction of excess etherate HBF(4) with 1 in the relevant solvent. The complex [2-H(2)O](Y)(2) [Y = F(HF)(n)] spontaneously isomerizes into the terminal hydrido complexes [(PHCy(2))Pt(μ-PCy(2)){κ(2)P,O-μ-P(O)Cy(2)}Pt(H)(PHCy(2))](Y)(Pt-Pt) ([6](Y)). In the presence of HF, complex [6](Y) transforms into the bis-phosphanido-bridged Pt(II) dinuclear complex [(PHCy(2))(H)Pt(μ-PCy(2))(2)Pt{κP-P(OH)Cy(2)}](Y)(Pt-Pt) ([7](Y)). When the reaction of 1 with HF was carried out with diluted hydrofluoric acid by allowing the HF to slowly diffuse into the dichloromethane solution, the main product was the linear 60e tetranuclear complex [(PHCy(2)){κP-P(O)Cy(2)}Pt(1)(μ-PCy(2))(μ-H)Pt(2)(μ-PCy(2))](2)(Pt(1)-Pt(2)) (8). Insoluble compound 8 is readily protonated by HBF(4) in dichloromethane, forming the more soluble species [(PHCy(2)){κP-P(OH)Cy(2)}Pt(1)(μ-PCy(2))(μ-H)Pt(2)(μ-PCy(2))](2)(BF(4))(2)(Pt(1)-Pt(2)) {[9][BF(4)](2)}. XRD analysis of [9][BF(4)](2)·2CH(2)Cl(2) shows that [9](2+) is comprised of four coplanar Pt atoms held together by four phosphanido and two hydrido bridges. Both XRD and NMR analyses indicate alternate intermetal distances with peripheral Pt-Pt bonds and a longer central Pt···Pt separation. DFT calculations allow tracing of the mechanistic pathways for the protonation of 1 by HBF(4) and HF and evaluation of their energetic aspects. Our results indicate that in both cases the protonation occurs through an initial proton transfer from the acid to the phosphinito oxygen, which then shuttles the incoming proton to the Pt-Pt bond. The different evolution of the reaction with HF, leading also to [6](Y) or 8, has been explained in terms of the peculiar behavior of the F(HF)(n)(-) anions and their strong basicity for n = 0 or 1.  相似文献   

8.
Acetylplatinum(II) complexes trans-[Pt(COMe)Cl(L)2] (L = PPh3, 2a; P(4-FC6H4)3, 2b) were found to react with dialkyldisulfides R2S2 (R = Me, Et, Pr, Bu; Pr = n-propyl, Bu = n-butyl), yielding trinuclear 44 cve (cluster valence electrons) platinum clusters [(PtL)3(mu-SR)3]Cl (4). The analogous reaction of 2a-b with Ph2S2 gave SPh bridged dinuclear complexes trans-[{PtCl(L)}2(mu-SPh)2] (5), whereas the addition of Bn2S2 (Bn = benzyl) to 2a ended up in the formation of [{Pt(PPh3)}3(mu3-S)(mu-SBn)3]Cl (6). Theoretical studies based on the AIM theory revealed that type 4 complexes must be regarded as triangular platinum clusters with Pt-Pt bonds whereas complex 6 must be treated as a sulfur capped 48 ve (valence electrons) trinuclear platinum(II) complex without Pt-Pt bonding interactions. Phosphine ligands with a lower donor capability in clusters 4 proved to be subject to substitution by stronger donating monodentate phosphine ligands (L' = PMePh2, PMe2Ph, PBu3) yielding clusters [(PtL')3(mu-SR)3]Cl (9). In case of the reaction of clusters 4 and 9 with PPh2CH2PPh2 (dppm), a fragmentation reaction occurred, and the complexes [(PtL)2(mu-SMe)(mu-dppm)]Cl (12) and [Pt(mu-SMe)2(dppm)] (13) were isolated. Furthermore, oxidation reactions of cluster [{Pt(PPh3)}3(mu-SMe)3]Cl (4a) using halogens (Br2, I2) gave dimeric platinum(II) complexes cis-[{PtX(PPh3)}2(mu-SMe)2] (14, X = Br, I) whereas oxidation reactions using sulfur and selenium afforded chalcogen capped trinuclear 48 ve complexes [{Pt(PPh3)}3(mu3-E)(mu-SMe)3] (15, E = S, Se). All compounds were fully characterized by means of NMR and IR spectroscopy, microanalyses, and ESI mass spectrometry. Furthermore, X-ray diffraction analyses were performed for the triangular cluster 4a, the trinuclear complex 6, as well as for the dinuclear complexes trans-[{Pt(AsPh3)}2(mu-SPh)2] (5c), [{Pt(PPh3)}2(mu-SMe)(mu-dppm)]Cl (12a), and [{{PtBr(PPh3)}2(mu-SMe)2] (14a).  相似文献   

9.
The binuclear cyclometalated complexes [Pt(2)Me(2)(ppy)(2)(μ-dppm)], 1a, and [Pt(2)Me(2)(bhq)(2)(μ-dppm)], 1b, in which ppy = 2-phenylpyridyl, bhq = benzo{h}quinoline and dppm = bis(diphenylphosphino)methane, were synthesized by the reaction of [PtMe(SMe(2))(ppy)] or [PtMe(SMe(2))(bhq)] with 1/2 equiv of dppm at room temperature, respectively. Complexes 1a and 1b were fully characterized by multinuclear ((1)H, (31)P, (13)C, and (195)Pt) NMR spectroscopy and were further identified by single crystal X-ray structure determination. A comparison of the intramolecular Pt-Pt and π-π interactions in complexes 1a and 1b has been made on the basis of data on crystal structures and wave functions analysis. The binuclear complexes 1a and 1b are luminescent in the solid state, and showing relatively intense orange-red emissions stemming from (3)MMLCT excited states. The reaction of complex 1b with excess MeI gave the binuclear cyclometalated Pt(IV)-Pt(IV) complex [Pt(2)Me(4)(bhq)(2)(μ-I)(2)], 2. Crystal structure of complex 2 shows intermolecular C-H···I and C-H···π interactions in solid state.  相似文献   

10.
The synthesis of the heterotopic P,SAs ligand, 1-Ph(2)AsSC(6)H(4)-2-PPh(2) (1) and its reaction with [PdCl(2)(cod)], [PtI(2)(cod)] (cod = 1,5-cyclooctadiene) and NiCl(2)·6H(2)O is reported. Cleavage of the As-S bond of 1 and coordination of the resulting phosphanylthiolato ligand (SC(6)H(4)-2-PPh(2))(-) (SC(6)H(4)-2-PPh(2) = P,S) was observed with formation of [M(P,S)(2)] (M = Ni, Pd, Pt). In the case of Pd and Pt, not only the mononuclear complexes [M(P,S)(2)] formed, but also the trimers of [MX(P,S)] ([MX{(μ-S-SC(6)H(4)-2-PPh(2))-κ(2)S,P}](3) [M = Pd, X = Cl (2) and M = Pt, X = I (4)]). Formation of 2 and 4 was preceded by the trinuclear isomeric intermediates [(cis-M{(μ-S-SC(6)H(4)-2-PPh(2))-κ(2)S,P}(2))-MX(2)-MX{(μ-S-SC(6)H(4)-2-PPh(2))-κ(2)S,P}] [M = Pd, X = Cl (3) and M = Pt, X = I (5)]. The crystal structures of 1-5 and a possible reaction mechanism that leads to 2 and 4 are presented.  相似文献   

11.
Synthesis of the novel titanoxane compounds, [(TiCl)(TiOH){(Ti)[μ-(η(5)-C(5)Me(4)SiMe(2)O-κO)](2)(μ-O)}(2)(μ-O)] (4) and [{Ti[μ-(η(5)-C(5)Me(4)SiMe(2)O-κO)](μ-O)}(4)] (5) by controlled reaction of the dinuclear titanium oxo complex [{Ti{μ-(η(5)-C(5)Me(4)SiMe(2)O-κO)}Cl](2)(μ-O)] (1) with 2 equiv of LiOH is reported. Complex 4 is innovative and remarkable. It is one of the rare known examples of tetranuclear stable terminal hydroxo titanium complexes, with an open-chained structure, which coincides with the transient metal monohydroxo proposed in the stepwise pathway employed to justify the formation of the hexanuclear complex [{Ti[μ-(η(5)-C(5)Me(4)SiMe(2)O-κO)](μ-O)}(6)] (3) from 1. (1)H DOSY experiments were used to characterize complex 4. In addition, the structures of compound 5 and of precursor 1 were determined by single-crystal X-ray diffraction studies.  相似文献   

12.
This work describes the synthesis of compounds [Pt(C=N)(NCMe) 2]ClO 4 (C=N = 7,8-benzoquinolinato (bzq), 2-phenylpyridinato (ppy)) and their use as precursors for the preparation of the cyanido complexes [Pt(C=N)(CN) 2] (-), which were isolated as the potassium, [K(H 2O)][Pt(C=N)(CN) 2] [C=N = bzq ( 3a), ppy ( 4a)], and the tetrabutylammonium, NBu 4[Pt(C=N)(CN) 2] [C=N = bzq ( 5), ppy ( 6)], salts. The difference in the cation has an influence on the solubility, color, and emission properties of these compounds. Compounds 5 and 6 are yellow and soluble in organic solvents, while the potassium salts are also soluble in water and exhibit two forms: the water-containing [K(H 2O)][Pt(C=N)(CN) 2] [C=N = bzq ( 3a), ppy ( 4a)] complexes and the anhydrous ones K[Pt(C=N)(CN) 2] [C=N = bzq ( 3b), ppy ( 4b)], the former being strongly colored [red ( 3a) or purple ( 4a)] and the latter being yellow. Compounds 3a and 4a transform reversibly into the yellow, 3b and 4b, compounds upon desorption/ reabsorption of water molecules from the environment. The red solid, 3a, also exhibits vapochromic behavior when it is exposed to volatile organic compounds, the shortest response times being those observed for methanol and ethanol. UV-vis and emission spectra of all compounds were recorded both in solution and in the solid state. In methanol solution, the difference in the cation causes no differences in the absorption nor in the emission spectra, which is as expected for the monomer species. However, in the solid state, the differences are notable. For both the red ( 3a) and purple ( 4a) compounds, a prominent absorption, which has maxima at about 550 nm and is responsible for their intense colors, as well as a structureless emission at lambda > 700 nm that suffers a significant red-shift upon cooling, are due to (1,3)MMLCT (= metal-metal-to-ligand charge transfer) [dsigma*(Pt) --> pi*(C=N)] transitions characteristic of linear-chain platinum complexes with short Pt...Pt contacts. Time-dependent density-functional theory calculations on complex 5 and the X-ray diffraction study on compound [K(OCMe 2) 2][Pt(ppy)(CN) 2] ( 4c) are also included.  相似文献   

13.
The protonation of the dinuclear phosphinito bridged complex [(PHCy2)Pt(mu-PCy2){kappa(2)P,O-mu-P(O)Cy2}Pt(PHCy2)] (Pt-Pt) (1) by Br?nsted acids affords hydrido bridged Pt-Pt species the structure of which depends on the nature and on the amount of the acid used. The addition of 1 equiv of HX (X = Cl, Br, I) gives products of formal protonation of the Pt-Pt bond of formula syn-[(PHCy2)(X)Pt(mu-PCy2)(mu-H)Pt(PHCy2){kappaP-P(O)Cy2}] (Pt-Pt) (5, X = Cl; 6, X = Br; 8, X = I), containing a Pt-X bond and a dangling kappa P-P(O)Cy2 ligand. Uptake of a second equivalent of HX results in the protonation of the P(O)Cy2 ligand with formation of the complexes [(PHCy2)(X)Pt(mu-PCy2)(mu-H)Pt(PHCy2){kappaP-P(OH)Cy2}]X (Pt-Pt) (3, X = Cl; 4, X = Br; 9, X = I). Each step of protonation is reversible, thus reactions of 3, 4, with NaOH give, first, the corresponding neutral complexes 5, 6, and then the parent compound 1. While the complexes 3 and 4 are indefinitely stable, the iodine analogue 9 transforms into anti-[(PHCy2)(I)Pt(mu-PCy2)(mu-H)Pt(PHCy2)(I)] (Pt-Pt) (7) deriving from substitution of an iodo group for the P(OH)Cy2 ligand. Complexes 3 and 4 are isomorphous crystallizing in the triclinic space group P1 and show an intramolecular hydrogen bond and an interaction between the halide counteranion and the POH hydrogen. The occurrence of such an interaction also in solution was ascertained for 3 by (35)Cl NMR. Multinuclear NMR spectroscopy (including (31)P-(1)H HOESY) and density-functional theory calculations indicate that the mechanism of the reaction starts with a prior protonation of the oxygen with formation of an intermediate (12) endowed with a six membered Pt(1)-X...H-O-P-Pt(2) ring that evolves into thermodynamically stable products featuring the hydride ligand bridging the Pt atoms. Energy profiles calculated for the various steps of the reaction between 1 and HCl showed very low barriers for the proton transfer and the subsequent rearrangement to 12, while a barrier of 29 kcal mol(-1) was found for the transformation of 12 into 5.  相似文献   

14.
Ni(6) clusters of the general formula [{Ni(3)L(n)(OAc)(OH)}(2)(X)(OAc)(H(2)O)(2)] (n = 1, 2; X = Cl(-) or N(3)(-), (L(n))(3-) = hexadentate tritopic ligands) can be isolated by spontaneous self-assembly, from mixtures of Ni(OAc)(2), H(3)L(n), NMe(4)OH·5H(2)O and NaX in adequate molar ratios. Thus, four new hexanuclear complexes [{Ni(3)L(1)(OAc)(OH)}(2)Cl(OAc)(H(2)O)(2)]·7.5H(2)O (1·7.5H(2)O), [{Ni(3)L(2)(OAc)(OH)}(2)Cl(OAc)(H(2)O)(2)]·2H(2)O·7.5MeOH (2·2H(2)O·7.5MeOH), [{Ni(3)L(1)(OAc)(OH)}(2)(N(3))(OAc)(H(2)O)(2)]·6H(2)O (3·6H(2)O) and [{Ni(3)L(2)(OAc)(OH)}(2)(N(3))(OAc)(H(2)O)(2)]·4H(2)O (4·4H(2)O) were obtained and fully characterised. 1·7.5H(2)O and 2·2H(2)O·7.5MeOH were isolated in the form of single crystals, the latter losing solvate on drying, to yield 2·2H(2)O. Recrystallisation of 3·6H(2)O in MeCN/MeOH also generates single crystals of 3·H(2)O·2MeOH·2MeCN. Their X-ray characterisation shows that these Ni(6) clusters can be considered to be built from two triangular trinuclear [Ni(3)L(n)(OAc)(OH)](+) subunits with different connectors. In addition, these studies demonstrate that the (L(n))(3-) ligands behave as trinucleating, adopting such a conformation that induces chirality in the isolated compounds. In this way, 3·H(2)O·2MeOH·2MeCN appears particularly interesting, since it emerges as homochiral after undergoing spontaneous resolution upon crystallisation. The magnetic characterisation of 1·7.5H(2)O to 3·6H(2)O reveals that the three compounds present an overall antiferromagnetic coupling. The intricate magnetic behaviour of these clusters, mediated by a total of 14 bridges of different kinds, was analysed and satisfactorily interpreted in light of DFT calculations.  相似文献   

15.
The hybrid dibismuthines O(CH(2)CH(2)BiPh(2))(2) and MeN(CH(2)-2-C(6)H(4)BiPh(2))(2) react with [M(CO)(5)(thf)] (M = Cr or W) to form [{M(CO)(5)}(2){O(CH(2)CH(2)BiPh(2))(2)}] and [{Cr(CO)(5)}(2){MeN(CH(2)-2-C(6)H(4)BiPh(2))(2)}] containing bridging bidentate (Bi(2)) coordination. The unsymmetrical tertiary bismuthine complexes [M(CO)(5){BiPh(2)(o-C(6)H(4)OMe)}] are also described. Depending upon the molar ratio, the hybrid distibines O(CH(2)CH(2)SbMe(2))(2) and MeN(CH(2)-2-C(6)H(4)SbMe(2))(2) react with [M(CO)(5)(thf)] to give the pentacarbonyl complexes [{M(CO)(5)}(2){O(CH(2)CH(2)SbMe(2))(2)}] and [{Cr(CO)(5)}(2){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] or tetracarbonyls cis-[M(CO)(4){O(CH(2)CH(2)SbMe(2))(2)}] and cis-[M(CO)(4){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}]. The latter can also be obtained from [Cr(CO)(4)(nbd)] or [W(CO)(4)(pip)(2)], and contain chelating bidentates (Sb(2)-coordinated) as determined crystallographically. S(CH(2)-2-C(6)H(4)SbMe(2))(2) coordinates as a tridentate (SSb(2)) in fac-[M(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}] (M = Cr or Mo) and fac-[Mn(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)]. Fac-[Mn(CO)(3){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)] contains NSb(2)-coordinated ligand in the solid state, but in solution a second species, Sb(2)-coordinated and with a κ(1)-CF(3)SO(3) replacing the coordinated amine is also evident. X-ray crystal structures were also determined for fac-[Cr(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}], fac-[Mn(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)] and fac-[Mn(CO)(3){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] [CF(3)SO(3)]. Hypervalent N···Sb interactions are present in cis-[M(CO)(4){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] (M = Mo or W), but absent for M = Cr.  相似文献   

16.
The reaction of [n-Bu(2)SnO](n) with 1,5-naphthalenedisulfonic acid tetrahydrate in a 1:1 stoichiometry followed by reaction with 2,2'-bipyridine-N,N'-dioxide (BPDO-I) afforded a 1D-coordination polymer [n-Bu(2)Sn(BPDO-I)(1,5-C(10)H(6)(SO(3))(2))](n) (1) where the disulfonate ligand acts as a bridging ligand between two tin centers. An analogous reaction involving [Ph(2)SnO](n) afforded a trihydrated O,O'-chelated diorganotin cation [{Ph(2)Sn(BPDO-I)(H(2)O)(3)}(2+)][C(10)H(6)(SO(3)(-))(2)]·2CH(3)OH (2·2CH(3)OH). Utilizing two equivalents of BPDO-I in this reaction resulted in the ionic complex [{Ph(2)Sn(BPDO-I)(2)(H(2)O)}(2+)][C(10)H(6)(SO(3)(-))(2)]·3H(2)O (3·3H(2)O). In 2 and 3 the sulfonate ligands are not present in the coordination sphere of tin. Reaction of [n-Bu(2)SnO](n) and 1,5-naphthalenedisulfonic acid tetrahydrate, followed by reaction with [bis(diphenylphosphoryl)methane (DPPOM)] resulted in the formation of, [{n-Bu(2)Sn(DPPOM)(2)(H(2)O)(1,5-C(10)H(6)(SO(3))(SO(3)(-))}]·H(2)O (4·H(2)O). Of the two coordinating groups present in DPPOM, only one P=O group is coordinated to the tin atom. The remaining P=O motif is free and is involved in intramolecular H-bonding with the tin-bound water molecule. Using [Ph(2)SnO](n) instead of [n-Bu(2)SnO](n) afforded the ionic complex [{Ph(2)Sn(DPPOM)(2)}(2+){1,5-C(10)H(6)(SO(3)(-))(2)}] (5) where the DPPOM functions as a chelating ligand. The reaction of [n-Bu(2)SnO](n) with 1,5-naphthalenedisulfonic acid tetrahydrate followed by addition of one equivalent of 8-hydroxyquinoline (8-HQ) in presence of triethylamine afforded the neutral dinuclear complex, [(H(2)O)(8-Q)n-Bu(2)Sn(μ-1,5-C(10)H(6)(SO(3))(2))n-Bu(2)Sn(8-Q)(H(2)O)] (6) where the two tin atoms are bridged by the disulfonate ligand. Compounds 1-6 are thermally stable as shown by their thermogravimetric analyses.  相似文献   

17.
Reaction of the ditopic phosphanylarylthiol 1-P(Biph)-2-SHC(6)H(4) (BiphPSH, Biph = 1,1'-biphenyl-2,2'-diyl), prepared by lithiation-electrophilic substitution, with NiCl(2)·6H(2)O, Na(2)[PdCl(4)] and [PtI(2)(cod)] (cod = 1,5-cyclooctadiene) in a 2:1 ratio and in the presence of NEt(3) led to formation of exclusively cis isomers of the square-planar complexes cis-[M{(1-P(Biph)-2-S-C(6)H(4))-κ(2)S,P}(2)] ([M{(BiphPS)-κ(2)S,P}(2)]; M = Ni (1), Pd (2), Pt (3)). Density functional calculations support the assumption that this is probably due to intramolecular π-π interaction of the biphenyl groups, which results in enhanced stability of the cis isomers. Compound 1 is the first example of a structurally characterised mononuclear cis-bis(phosphanylthiolato)nickel(III) complex. Small amounts of the trinuclear complex [{PtI(1-P(Biph)-μ-2-S-C(6)H(4)-κ(2)S,P)}(3)] (4) are also formed besides the mononuclear platinum bis-chelate complex 3.  相似文献   

18.
Low-temperature NMR measurements showed that protonolysis and deuterolysis by H(D)X acids on meta- and para-substituted dibenzylplatinum(II) complexes cis-[Pt(CH(2)Ar)(2)(PEt(3))(2)] (Ar = C(6)H(4)Y(-); Y = 4-Me, 1a; 3-Me, 1b; H, 1c; 4-F, 1d; 3-F, 1e; 4-Cl, 1f; 3-Cl, 1g; 3-CF(3), 1h) in CD(3)OD leads directly to the formation of trans-[Pt(CH(2)Ar)(PEt(3))(2)(CD(3)OD)]X (4a-4h) and toluene derivatives. The reaction obeys the rate law k(obsd) = k(H)[H(+)]. For CH(2)Ar = CH(2)C(6)H(5)(-), k(H) = 176 ± 3 M(-1) s(-1) and k(D) = 185 ± 5 M(-1) s(-1) at 298.2 K, ΔH(double dagger) = 46 ± 1 kJ mol(-1) and ΔS(double dagger) = -47 ± 1 J K(-1) mol(-1). In contrast, in acetonitrile-d(3), three subsequent stages can be distinguished, at different temperature ranges: (i) instantaneous formation of new benzylhydridoplatinum(IV) complexes cis-[Pt(CH(2)Ar)(2)(H)(CD(3)CN)(PEt(3))(2)]X (2a-2h, at 230 K), (ii) reductive elimination of 2a-2h to yield cis-[Pt(CH(2)Ar)(CD(3)CN)(PEt(3))(2)]X (3a-3h) and toluene derivatives (in the range 230-255 K), and finally (iii) spontaneous isomerization of the cis cationic solvento species to the corresponding trans isomers (4a-4h, in the range 260-280 K). All compounds were detected and fully characterized through their (1)H and (31)P{(1)H} NMR spectra. Kinetics monitored by (1)H and (31)P{(1)H} NMR and isotopic scrambling experiments on cis-[Pt(CH(2)Ar)(2)(H)(CD(3)CN)(PEt(3))(2)]X gave some insight onto the mechanism of reductive elimination of 2a-2h. Systematic kinetics of isomerization of 3a-3h were followed in the temperature range 285-320 K by stopped-flow techniques. The process goes, as expected, through the relatively slow dissociative loss of the weakly bonded solvent molecule and interconversion of two geometrically distinct T-shaped three-coordinate intermediates. The dissociation energy depends upon the solvent-coordinating ability. DFT optimization reveals that along the energy profile the "cis-like" [Pt(CH(2)Ar)(PMe(3))(2)](+) intermediate is strongly stabilized by a Pt···η(2)-C1-C(ipso) bond between the unsaturated metal and benzyl carbons. The value of the ensuing stabilization energy was estimated by computational data to be greater than that found for similar β-agostic Pt···η(2)-CH interactions with alkyl groups containing β-hydrogens. An observed consequence of the strong stabilization of "cis"-[Pt(η(2)-CH(2)Ar)(PMe(3))(2)](+) is the remarkable acceleration of the rate of isomerization, greater than that produced by the so-called "β-hydrogen kinetic effect". Kinetic and DFT data concur to indicate that electron donation by substituents on the benzyl ring leads to further stabilization of the "cis"-[Pt(η(2)-CH(2)Ar)(PMe(3))(2)](+) cationic species.  相似文献   

19.
Heteropolytopic arsanylthiolato ligands 1-AsPh(2)-2-SHC(6)H(4) (AsSH), PhAs(2-SHC(6)H(4))(2) (AsS(2)H(2)), and As(2-SHC(6)H(4))(3) (AsS(3)H(3)) have been prepared by lithiation-electrophilic substitution procedures. The 2:1 reaction of AsSH with NiCl(2)·6H(2)O, Na(2)[PdCl(4)], and [PtI(2)(cod)] (cod = 1,5-cyclooctadiene) in the presence of NEt(3) afforded the square-planar complexes trans-[Ni{(AsS)-κ(2)S,As}(2)] (1), cis-[Pd{(AsS)-κ(2)S,As}(2)] (2), trans-[Pd{(AsS)-κ(2)S,As}(2)] (3), and cis-[Pt{(AsS)-κ(2)S,As}(2)] (4). In the cases of nickel and platinum, only one isomer was isolated. With palladium, initially the cis isomer 2 is formed and undergoes slow isomerization to the trans isomer 3 in solution. Small amounts of the trinuclear complex [{PtI(1-AsPh(2)-μ-2-S-C(6)H(4)-κ(2)S,As)}(3)] (5) are also formed besides the mononuclear platinum bis-chelate complex 4. Density functional theory calculations support a dissociative mechanism for the isomerization of the palladium(II) complexes.  相似文献   

20.
The neutral compounds [Pt(bzq)(CN)(CNR)] (R=tBu ( 1 ), Xyl ( 2 ), 2‐Np ( 3 ); bzq= benzoquinolate, Xyl=2,6‐dimethylphenyl, 2‐Np=2‐napthyl) were isolated as the pure isomers with a trans‐Cbzq,CNR configuration, as confirmed by 13C{1H} NMR spectroscopy in the isotopically marked [Pt(bzq)(13CN)(CNR)] (R=tBu ( 1′ ), Xyl ( 2′ ), 2‐Np ( 3′ )) derivatives (δ13CCN≈110 ppm; 1J(Pt,13C)≈1425 Hz]. By contrast, complex [Pt(bzq)(C≡CPh)(CNXyl)] ( 4 ) with a trans‐Nbzq,CNR configuration, has been selectively isolated from [Pt(bzq)Cl(CNXyl)] (trans‐Nbzq,CNR) using Sonogashira conditions. X‐ray diffraction studies reveal that while 1 adopts a columnar‐stacked chain structure with Pt–Pt distances of 3.371(1) Å and significant π???π interactions (3.262 Å), complex 2 forms dimers supported only by short Pt???Pt (3.370(1) Å) interactions. In complex 4 the packing is directed by weak bzq???Xyl and bzq???C≡E (C, N) interactions. In solid state at room temperature, compounds 1 and 2 both show a bright red emission (?=42.1 % 1 , 57.6 % 2 ). Luminescence properties in the solid state at 77 K and concentration‐dependent emission studies in CH2Cl2 at 298 K and at 77 K are also reported for 1 , 1·CHCl3 , 2 , 2' , 2·CHCl3 , 3 , 4 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号