首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phase behavior of fluid mixtures is understood by the critical lines in fluid-gas diagrams. We investigated the critical lines of polymer-solvent systems at the mathematical double point, where two critical lines meet and exchange branches, and its environment within the framework of a model that combines the lattice gas model of Schouten, ten Seldam and Trappeniers with the Flory-Huggins theory. The critical lines are expressed as a function of x1 and x2, the density of type 1 polymer molecules and the density of type 2 polymer molecules, respectively; in this way global phase diagrams are presented and discussed in the density-density plane. Density-density plots are preferable when studying the differences in behavior of different classes, since they enable us to follow the connectivities in a systematic way. In this study the connectivity of critical lines at the mathematical double point and its around is investigated in detail. We also discuss the topology of the critical lines according to the Sadus classification scheme for ternary mixtures.  相似文献   

2.
We investigate the critical lines of polymer mixtures in the presence of their vapor phase at the mathematical double point, where two critical lines meet and exchange branches, and its environment. The model used combines the lattice gas model of Schouten, ten Seldam and Trappeniers with the Flory-Huggins theory. The critical line structure is displayed for various combinations of the chain length and system parameters in the pressure (P)-temperature (T) plane, as is usually done with experimental results. This type of work sheds light on the essential transition mechanism involved in the phase diagram's change of character, such as multi-critical points and mathematical double points, which are of great practical importance in supercritical fluid extraction processes. The P, T diagrams are discussed in accordance with the Scott and van Konynenburg binary phase diagram classification. We found that our P, T plots were in agreement with type II, type III, or type IV phase diagram behaviors. We also found that some of our phase diagrams represent the liquid-liquid equilibria in polymer solutions and mixtures.  相似文献   

3.
Using new molecular models of ammonia and methanol and thermodynamic perturbation theory, the global phase diagrams of model mixtures of these compounds with a van der Waals fluid, representing a simple nonpolar fluid, have been calculated. The global phase diagram of these mixtures is much richer than that of corresponding aqueous mixtures. More types of critical line behavior are found, including the presence of van Laar points and a small region where the mixtures exhibit a closed liquid-liquid immiscibility loop (Type VI phase behavior). The individual mixture components are characterized by two molecular parameters, which can be adjusted to their critical temperature and critical volume; the mixture model itself contains no adjustable parameters. It is shown that the theory gives qualitatively correct predietions of mixtures with n-alkanes. This includes the prediction of Type III critical line behavior for small and large values of the ratio of the critical temperatures of the components, and Type II over a large range of conditions, including the presence or absence of absolute or limited azeotropy, and temperature and pressure extrema of critical lines and their dependence on the number of carbon atoms.  相似文献   

4.
This paper is a contribution of our systematic investigation of the global phase behaviors of the chain molecules mixtures, i.e., polymer mixture solutions. The phase behavior of fluid mixtures is understood by the critical lines in fluid-gas diagrams. The critical lines of binary fluid system may, under circumstances, exhibit closed loops in the critical lines. A distinction is made between free critical loops, as described by type VI in the Scott and van Konynenburg classification, and "rooted" critical loops, as found in the shield region. We define rooted loops as closed critical lines that are attached to the critical line structure by means of unstable critical line. We obtain the rooted loops in the global phase diagrams of the polymer mixture solutions within the framework of a model that combines the lattice gas model of Schouten, ten Seldam and Trappeniers with the Flory-Huggins theory, and we present the influence of the chain length of long molecules on the rooted critical loops. We present the results in the density-density and the temperature (T)-pressure (P) planes in detail.  相似文献   

5.
In this study, a modification is presented for van Laar model (van der Waals mixture theory) for association mixtures. The molecular association effects are considered in van der Waals mixture theory by adding two new steps to van Laar cycle. The excess Gibbs free energy function and corresponding activity coefficient equations are derived for presented model. In addition to general case when both components are associating fluids, model simplified for two interesting cases: (i) only one fluid is associating, (ii) two fluids are associating but only self-associated species exist in the mixture. This model also is used for VLE calculations for 16 different binary mixtures in which one or both components are associating fluids. Results of the presented model show satisfactory improvement over the nonassociating case for vapor liquid equilibrium (VLE) prediction.  相似文献   

6.
According to the fluctuation theory of phase transitions, a real liquid near the critical point is an ideal gas of the fluctuations of the order parameter, the size of which is determined by the correlation length of the system. We deduce the extended equation of state of liquids near the critical temperature by including the properties of the real van der Waals gas in this model, i.e., taking into account the own volume of the fluctuations of the order parameter and the interaction forces between them. We use this equation to analyze the temperature dependence of the density of a series of alkanes (C n H2n + 2, n = 1 − 12) along the line of the liquid-gas equilibrium near their critical temperatures. We show that the parameters of this extended equation of the state of substance are linear functions of the compressibility factor of alkanes.  相似文献   

7.
The phase diagrams of the binary systems of 1,3,5-trinitrobenzene (TNB) with naphthalene, anthracene and carbazole have been determined by differential scanning calorimetry and optical microscopy over the temperature range 180 K to just above the melting point. All systems show the same features: (i) systems form nearly ideal double simple-eutectic type phase diagrams with 1 : 1 complex, (ii) each one of three known modifications of TNB may exist as a component of the complex—TNB eutectic mixtures. (iii) measured liquidus lines of complexes agree within experimental error with those calculated by the Vieland equation for a completely dissociated complex in the liquid phase, whereas the experimental liquidus lines for the parent components deviate slightly from those predicted by the Schröder—van Laar equation, indicating some degree of complexing in the liquid phase.

The solubility parameter theory has been used to clarify this discrepancy. Applying this theory to the liquidus lines of complexes, we have found that these TNB complexes are still stable upon fusion, and an approximate degree of dissociation amounted to 90% at the melting point in all three cases.

The enthalpy of complex formation, ΔH0, both in the liquid and solid state has been determined. The values of ΔH0 show that in the solid state the carbazole—TNB complex is the most stable, and the naphthalene—TNB complex is the least stable.  相似文献   


8.
An extended version of the van der Waals capillarity theory describing the liquid-vapor interface in the temperature range from the triple to the critical point is suggested. A model functional of thermodynamic potential for a two-phase Lennard-Jones system taking into account the effect of the highest degree terms of gradient expansion has been constructed. The identity of the thermodynamic and the mechanical definition of Tolman's length has been proved in the framework of the adopted form of functional. The properties of nuclei of the liquid and the vapor phase are described. The paper determines: the work of formation of a nucleus, density profiles, size dependences of the surface tension, and the parameter delta in the Gibbs-Tolman-Koenig-Buff equation.  相似文献   

9.
The solvent around protein molecules in solutions is structured and this structuring introduces a repulsion in the intermolecular interaction potential at intermediate separations. We use Monte Carlo simulations with isotropic, pair-additive systems interacting with such potentials. We test if the liquid-liquid and liquid-solid phase lines in model protein solutions can be predicted from universal curves and a pair of experimentally determined parameters, as done for atomic and colloid materials using several laws of corresponding states. As predictors, we test three properties at the critical point for liquid-liquid separation: temperature, as in the original van der Waals law, the second virial coefficient, and a modified second virial coefficient, all paired with the critical volume fraction. We find that the van der Waals law is best obeyed and appears more general than its original formulation: A single universal curve describes all tested nonconformal isotropic pair-additive systems. Published experimental data for the liquid-liquid equilibrium for several proteins at various conditions follow a single van der Waals curve. For the solid-liquid equilibrium, we find that no single system property serves as its predictor. We go beyond corresponding-states correlations and put forth semiempirical laws, which allow prediction of the critical temperature and volume fraction solely based on the range of attraction of the intermolecular interaction potential.  相似文献   

10.
A mathematical model for analyzing the van der Waals interaction between the internal aqueous droplets (W(1)) and the external aqueous phase (W(2)) of double emulsions has been established. The effects of Hamaker constants of the materials forming the system, especially those of the two different adsorbed surfactant layers with uniform density (A(1) and A(2)), on the van der Waals interaction were investigated. The overall van der Waals interaction across the oil film is a combined result of four individual parts, that is, W(1)-W(2), A(1)-A(2), W(1)-A(1), and A(2)-W(2) van der Waals interaction, and it may be either attractive or repulsive depending on many factors. It was found that the overall van der Waals interaction is dominated by the W(1)-W(2) interaction at large separation distances between the W(1)/O and O/W(2) interfaces, while it is mostly determined by the A(1)-A(2) interaction when the two interfaces are extremely close. Specifically, in the cases when the value of the Hamaker constant of the oil phase is intermediate between those of W(1) and W(2) and there is a thick oil film separating the two interfaces, a weak repulsive overall van der Waals interaction will prevail. If the Hamaker constant of the oil phase is intermediate between those of A(1) and A(2) and the two interfaces are very close, the overall van der Waals interaction will be dominated by the strong repulsive A(1)-A(2) interaction. The repulsive van der Waals interaction at such cases helps stabilize the double emulsions.  相似文献   

11.
A mean-field theory of deformation-induced microphase segregation in bridging polymeric brushes anchored to two parallel surfaces is presented. Models with isotropic and orientation-dependent liquid-crystalline interactions between segments are considered. For the first model, the problem is similar to that of classical liquid-vapor phase separation, and the phase diagram in the P-T plane has a line of first-order transitions terminating at the critical point. We show that the critical pressure is negative implying that a free brush tethered only to one surface always exists at supercritical conditions and hence cannot undergo the collapse phase transition. In the second model, the free energy density depends on two coupled order parameters, one related to segment density and the other to the orientational order, which strongly modifies the phase behavior. Depending on the grafting density the system is described by a phase diagram of a regular or a singular type. In the regular phase diagram the first-order transition line terminates at the critical point. In a singular diagram, the first-order transition line extends to infinity; the critical point corresponds to infinite pressure so that the system undergoes the phase transition at arbitrary external pressures. Regular phase diagrams correspond to dense grafting, and singular ones to sparse grafting. The change from a regular phase behavior to another occurs at a certain marginal value of the grafting density. On approaching this value the critical point on the regular diagram moves to infinity, logarithmically with the deviation from the critical grafting density. We relate the analytical properties of the free energy density as a function of the segment concentration to the type of the phase diagram and the shape of the coexistence curve in the temperature- concentration plane.  相似文献   

12.
Measurements of the p, V, T data and phase equilibrium of a water-n-pentane system were performed. It was established that the phase diagram of this system belongs to the third type in the Scott and Van Koninenburg classification. The intervals and parameters of the lower and upper branches of the critical line and the parameters of the upper critical endpoint and the double homogeneous point were determined.  相似文献   

13.
14.
The importance of accurately treating van der Waals interactions between the quantum mechanical (QM) and molecular mechanical (MM) atoms in hybrid QM/MM simulations has been investigated systematically. First, a set of van der Waals (vdW) parameters was optimized for an approximate density functional method, the self-consistent charge-tight binding density functional (SCC-DFTB) approach, based on small hydrogen-bonding clusters. The sensitivity of condensed phase observables to the SCC-DFTB vdW parameters was then quantitatively investigated by SCC-DFTB/MM simulations of several model systems using the optimized set and two sets of extreme vdW parameters selected from the CHARMM22 forcefield. The model systems include a model FAD molecule in solution and a solvated enediolate, and the properties studied include the radial distribution functions of water molecules around the solute (model FAD and enediolate), the reduction potential of the model FAD and the potential of mean force for an intramolecular proton transfer in the enediolate. Although there are noticeable differences between parameter sets for gas-phase clusters and solvent structures around the solute, thermodynamic quantities in the condensed phase (e.g., reduction potential and potential of mean force) were found to be less sensitive to the numerical values of vdW parameters. The differences between SCC-DFTB/MM results with the three vdW parameter sets for SCC-DFTB atoms were explained in terms of the effects of the parameter set on solvation. The current study has made it clear that efforts in improving the reliability of QM/MM methods for energetical properties in the condensed phase should focus on components other than van der Waals interactions between QM and MM atoms.  相似文献   

15.
A double well type Helmholtz free energy density functional and a model density profile for a two phase vapor-liquid system are used to obtain the size-dependent interfacial properties of the vapor-liquid interface at coexistence condition along the lines of van der Waals and Cahn and Hilliard density functional formalism of the interface. The surface tension, temperature-density curve, density profile, and thickness of the interface of Lennard-Jones fluid droplet-vapor equilibrium, as predicted in this work are reported. The planar interfacial properties, obtained from consideration of large radius of the liquid drop, are in good agreement with the results of other earlier theories and experiments. The same free energy model has been tested by solving the equations numerically, and the results compare well with those from the use of model density profile.  相似文献   

16.
Density functional theory is in principle exact and includes also long-range interactions, such as the van der Waals interactions. These are, however, part of the exchange-correlation energy functional that needs to be approximated, and are absent in the local and semilocal standard implementations. Recently a density functional which includes van der Waals interactions for planar systems has been developed, which we show can be extended to provide a treatment of planar molecules. We use this functional to calculate binding distances and energies for dimers of three of the smallest polycyclic aromatic hydrocarbons (PAHs)--naphthalene, anthracene, and pyrene.  相似文献   

17.
In the framework of the van der Waals model, analytical expressions for the locus of extrema (ridges) for heat capacity, thermal expansion coefficient, compressibility, density fluctuation, and sound velocity in the supercritical region have been obtained. It was found that the ridges for different thermodynamic values virtually merge into single Widom line only at T < 1.07T(c), P < 1.25P(c) and become smeared at T < 2T(c), P < 5P(c), where T(c) and P(c) are the critical temperature and pressure. The behavior of the Batschinski lines and the pseudo-Gruneisen parameter γ of a van der Waals fluid were analyzed. In the critical point, the van der Waals fluid has γ = 8/3, corresponding to a soft sphere particle system with exponent n = 14.  相似文献   

18.
We investigate theoretically the binary fluid-phase behavior of mixtures in which one water-like component can have two critical points. We consider three equal-sized nonpolar solutes that differ in the strength of their dispersive interactions (a1 < a2 < a3, where a denotes the van der Waals attractive parameter). In each case, we compare the phase behavior predicted using two sets of parameters for water: one giving rise to a pure component low-temperature liquid-liquid transition terminating at a critical point (two-critical-point parameter set), and one in which no such second critical point exists (singularity-free parameter set). Regardless of the parameter values used, we find five mixture critical lines. Using the two-critical-point parameter set, we find that a critical line originates at water's second critical point for aqueous mixtures involving solutes 1, 2, or 3. For mixtures involving solutes 1 or 2, this line extends towards low pressures and high temperatures as the solute mole fraction increases, and is closely related to the critical line originating at water's ordinary vapor-liquid critical point: these two critical lines are loci of upper and lower consolute points corresponding to the same liquid-liquid transition. In mixtures involving solute 2, the critical locus emanating from water's second critical point is shifted to higher temperatures compared to mixtures involving solute 1, and extends up to T approximately 310 K at moderate pressures (ca. 200 bars). This suggests the possibility of an experimentally accessible manifestation of the existence of a second critical point in water. For binary mixtures involving solutes 1 or 2, changing the water parameters from the two critical points to the singularity-free case causes the disappearance of a lower consolute point at moderate pressures. For binary mixtures involving solute 3, the differences between two-critical-point and singularity-free behaviors occur only in the experimentally difficult-to-probe low-temperature and high-pressure region.  相似文献   

19.
The isoenergetic lines of van der Waals interaction between aromatic compounds and electrophilic or nucleophilic agents in parallel planes are drawn in order to detect the best approach channels for reagents in aromatic substitutions. The van der Waals interaction is comprised of the electrostatic, polarization and dispersion terms. It has been found that the channels depend on the molecules and on the positions of the centres attacked. The polarization term is shown to play a decisive role in electrophilic substitutions of phenanthrene and in nucleophilic substitutions of the pyridinium ion.  相似文献   

20.
In the previous papers applying the generic van der Waals equation of state the mean excluded volume was defined with the contact diameter of particles at which the potential energy is equal to zero-the size parameter in the case of the Lennard-Jones potential. This parameter appears as the upper limit of the integral for the generic van der Waals parameter B (mean excluded volume divided by the density) in the generic van der Waals equation of state. Since the choice is not unique, in this paper we reexamine the manner of defining the upper limit and propose another choice for the upper limit. We also propose an interpretation of the free volume overlap factor alpha appearing in the free volume theory of diffusion and a method of estimating it in terms of the intermolecular potential energy only. It is shown that with the so-estimated free volume overlap factor and the new choice of the upper limit of the integral for B the self-diffusion coefficient in the modified free volume theory of diffusion not only acquires a better accuracy than before, but also becomes calculable in terms of only the intermolecular interaction potential without an adjustable parameter. We also assess some of effective diameters of molecules proposed in the literature for their ability to predict the self-diffusion coefficient within the framework of the modified free volume theory of diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号