首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
环己酮是重要的有机化工原料和工业溶剂,是制造尼龙、己内酰胺和己二酸的主要中间体,环己酮的绿色生产工艺受到人们关注.目前全世界环己酮年产量接近900万吨,但环己酮生产仍主要以环己烷为原料,采用富氧空气氧化为环己基过氧化氢,再在铬酸叔丁酯催化剂作用下分解为环己醇和环己酮的混合物,然后经一系列蒸馏精制后得到环己酮、工艺复杂、能耗高,而且设备腐蚀、环境污染及安全问题严重.因此,大量工作正致力于新工艺和新催化剂研究,其中光催化氧化、分子筛催化氧化和金属氧化物催化氧化等都有相关报道,同时还有学者开发了其它环己酮制备新方法,如环己烯水合法、苯加氢法、环己醇氧化法和苯酚加氢法等.苯酚直接选择性加氢合成环己酮研究具有重要意义.苯酚加氢通常有两种工艺,气相加氢和液相加氢,由于液相加氢具有无需将反应物汽化、能耗较低和催化剂反应活性高等优势而受到广泛关注.但是目前大量文献报道的苯酚加氢过程仍需要高温条件且较易产生环己醇和环己烷等副产物,大部分催化反应需在有机溶剂中进行,因此如何提高环己酮选择性,减小环境影响成为近年来的热门课题.在过去数年中,人们筛选了大量催化剂,其中Pd催化剂具有较高活性和目的产物选择性,因为其对羰基表现出较低的催化活性.研究还发现,催化剂载体对苯酚加氢产物分布有重要影响,酸性载体或酸性助剂的加入均能提高苯酚转化率和环己酮选择性,可能的原因是催化剂表面可与苯酚羟基形成O-H…π强相互作用,使苯酚分子更容易吸附在载体表面,而一旦苯酚经催化加氢生成环己酮,由于失去羟基与载体表面相互作用,环己酮更容易从载体表面脱附,从而避免过度加氢生成环己醇,同时酸性位点可以增强Pd的电子密度,提高催化加氢活性.另外,通过添加助剂也可有效改善催化剂性能.然而,到目前为止,通过单一的一种催化剂仍然很难同时实现苯酚的高转化率和环己酮的高选择性.因此,开发新催化剂和简便的生产工艺对环己酮高效高质量生产具有重要意义.本文使用一种多孔、不易溶解的酸性离子交换树脂Amberlyst-45(A-45)为载体,采用简单的浸渍工艺制备了一系列不同Pd负载量的Pd/A-45催化剂,详细考察了催化剂在水相中对苯酚选择性加氢制环己酮的催化活性和选择性,包括反应温度、催化剂用量、反应时间和Pd负载量等对反应活性的影响及催化剂重复使用情况,并且与传统的SiO_2,ZnO,MgO,Al_2O_3和活性炭负载的Pd催化剂进行对比.研究发现,Pd/A-45催化剂在温和反应条件(40-100℃,0.2-1 MPa)下具有极高的催化活性和选择性,在适宜的反应条件下苯酚转化率达到100%,环己酮选择性高于89%.进一步分析由不同活性金属负载量制备的不同粒径Pd/A-45催化剂的活性规律发现,苯酚加氢生成环己酮是一个结构敏感型反应,其中Pd颗粒尺寸为12-14 nm时更有利于环己酮生成.  相似文献   

2.
Kinetics of the vapor phase hydrogenation of o-chloronitrobenzene (o-CNB) over Pd/Al2O3 catalyst has been studied in a downflow microreactor under atmospheric pressure. Reaction rates have been measured at three different temperatures with respect to the partial pressures of o-CNB and hydrogen. The order of the reaction with respect to o-CNB was 0.53 at 280°C and increased with increasing temperature. However, with respect to hydrogen, a negative order was observed at 280°C, which decreased further with increasing in temperature. The apparent activation energy (Ea), from the Arrhenius plot was found to be 41 kJ/mol. On the basis of kinetic results a surface mechanism is suggested.  相似文献   

3.
Mesoporous N-doped carbon supported palladium catalyst Pd@CN0.132 was able to efficiently catalyze unprotected indole to indoline under mild conditions.In the aqueous system,a selectivity of 100% and conversion of 96% was achieved under 313 K and atmospheric hydrogen gas.  相似文献   

4.
离子交换树脂催化合成丙烯酸—β—羟乙酯的动力学研究   总被引:3,自引:0,他引:3  
对732~#强酸型离子交换树脂催化合成丙烯酸-β-羟乙酯进行了动力学研究。测定并推算出反应级数、反应速率常数及活化能,提出了反应机理。  相似文献   

5.
The most suitable kinetic equation for the selective hydrogenation of phenol to cyclohexanone on a 0.96wt.% Pd-9.63wt.%CaO-alumina (Harshaw AL-3965) catalyst is determined among a series of models based on Langmuir-Hinshelwood-Hougen-Watson theory.
0,96 . %Pd-9,63 .%CaO/Al2O3 (Harshaw AL-3965). , ---.

  相似文献   

6.
张勤生  李海峰  高平  王来来 《催化学报》2014,(11):1793-1799
以聚乙烯吡咯烷酮(PVP)为稳定剂,采用化学还原法制备了PVP-NiB非晶态催化剂,通过红外光谱、X射线衍射、透射电子显微镜和电感耦合等离子体光谱对催化剂进行了表征.结果表明,PVP不仅能够提高NiB纳米颗粒的分散度,而且对其起到稳定作用;将该催化剂首次应用于苯酚及其衍生物的催化加氢反应,在水相体系中,30°C及氢气压力0.2 MPa时,苯酚的转化率和环己醇的选择性都能够达到99.9%;酚类衍生物加氢反应结果发现,该催化剂有利于环己醇类物质的生成,初步考察了PVP-NiB非晶态催化剂的构效关系.  相似文献   

7.
The hydrogenation of acetone and of propanal have been studied over Pd and Gapromoted Pd catalysts. The main effect of the promoter is to create new sites bearing the more reactive adsorption mode of propanal and acetone. Dedicated to Professor Pál Tétényi on the occasion of his 70th birthday  相似文献   

8.
9.
Pd/TiN nanocomposite catalysts were fabricated for one-step selective hydrogenation of phenol to cyclohexanone successfully. High conversion of phenol (99%) and selectivity of cyclohexanone (98%) were obtained at 30℃ and 0.2 MPa H2 for 12 h in the mixed solvents of H2O and CH2Cl2. The Pd nanoparticles were stable in the reaction, and no aggregation was detected after four successive runs. The catalytic activity and selectivity depended on slightly the Pd particle sizes. The generality of the catalysts for this reaction was demonstrated by the selective hydrogenation of phenol derivatives, which showed that the catalyst was selective for the formation of cyclohexanone.  相似文献   

10.
A ruthenium (Ru) catalyst supported on magnetic nanoparticles (NiFe2O4) has been successfully synthesized and used for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The catalyst shows excellent selectivity toward the desired products with very high yield even after five repeated uses.  相似文献   

11.
The catalytic action of 10% w/w Pd supported on two forms of graphitic carbon nanofibers (GCN) has been assessed and compared with the performance of 10% w/w Pd on SiO(2), Ta(2)O(5), activated carbon (AC), and graphite. Palladium nitrate served as metal precursor in each case but the role of the starting metal salt was also considered by examining the action of palladium acetate impregnated SiO(2). The activated catalysts have been characterized by hydrogen chemisorption, high-resolution transmission electron microscopy, and scanning electron microscopy. Phenol hydrogenation served as the test reaction, which proceeds in a stepwise fashion involving the partially hydrogenated cyclohexanone as a reactive intermediate. The occurrence and ramifications of Pd/support interaction(s) are related to hydrogenation activity and selectivity. The effects of contact time and reaction temperature (398-448 K) are reported and discussed in terms of phenol/catalyst interaction(s). Hydrogenation kinetics have been adequately represented by a standard pseudo-first-order approximation. The specific activities exhibited the following sequence of increasing values: Pd/AC相似文献   

12.
The kinetics of hydrogenation of cyclododeca-3,7-diene-1-one on commercially available supported metal catalysts has been studied in ethyl alcohol solutions at 323–363 K and 0.1–2.5 MP a pressure of hydrogen. The experimental data have been related to kinetic equations of the Langmuir-Hinshelwood type. The reaction schemes which best fit the experimental data are shown.  相似文献   

13.
Polyaniline coated on particles of celite is used as support to load palladium catalyst. This heterogenized Celite?PANI?Pd system, is used as an efficient catalyst for chemoselective hydrogenation reactions. The catalyst is characterized by usual spectral, analytical techniques and studied for hydrogenation reactions at ambient conditions. The mild reaction conditions allow the control over the reactions and excellent selectivity is achieved in number of conversions. Hydrogenation of a carbon–carbon double bond was favored over other polar π‐bond systems, while labile functional groups such as benzyl ether, benzyl esters, cyano, nitro and halogen remained unaffected. Primary amines were converted to N,N‐dimethyl amines with formaldehyde, the double bond of coumarin was selectively hydrogenated without opening of the lactone functionality.  相似文献   

14.
Acrylonitrile can be selectively hydrogenated into propionitrile at about 400 K over a ceramic-supported Ni catalyst. At low surface coverages, the observed rates of hydrogenation are proportional to the first powers of the partial pressures of both acrylonitrile and dihydrogen, in agreement with Langmuir-Hinshelwood kinetics.
400 . , , -.
  相似文献   

15.
The photodegradation of phenol was studied in the aqueous solutions over titania pillared zirconium phosphate and titanium phosphate under solar radiation and compared with that of the UV-radiation (6 W low pressure Hg vapor lamp). This reaction was studied by varying different parameters such as catalyst dose, initial phenol concentration, pH of solution and irradiation time. The degradation rate of phenol was favourable under neutral pH condition. The degradation process approximately obeyed first-order kinetics with apparent rate of degradation constant increasing with decreasing the initial phenol concentration.  相似文献   

16.
The enantioselective hydrogenation of mono and dimethoxy-substituted 2,3-diphenylpropenoic acids has been studied over cinchonidine modified supported Pd catalyst. The hydrogenation of the six monosubstituted methoxy derivatives of (E)-2,3-diphenylpropenoic acid showed that the position of the substituent has a decisive influence on the initial reaction rate and the enantioselectivity. High enantioselectivities, 86–90%, were obtained in the hydrogenation of mono-substituted derivatives with a favourable substituent position. The results were rationalized in terms of either the electronic or the steric effects of the methoxy substituent determined by its position. These suggestions were also applicable in interpreting the results obtained in the hydrogenation of substituted (Z)-2,3-diphenylpropenoic acids and selected dimethoxy (E)-2,3-diphenylpropenoic acids. The combined steric and electronic effects of the substituents on the α- and β-phenyl rings ensured the highest enantioselectivities, up to 92% ee, in the hydrogenation of (E)-2-(2-methoxyphenyl)-3-(4-methoxyphenyl)propenoic acid.  相似文献   

17.
The kinetics of nitrobenzene hydrogenation on a palladium triphenylphosphine catalyst supported on nanodiamonds was studied. It was found that the reaction is of first order with respect to the catalyst and hydrogen and of zero order with respect to nitrobenzene. The apparent constant and activation energy of the reaction were calculated. A probable reaction mechanism was proposed. The effects of the triphenylphosphine-to-palladium ratio and the nature of the solvent and an aromatic nitro compound on the activity of the test catalyst were demonstrated.  相似文献   

18.
New modifiers were prepared from -tryptophane and tested in the enantioselective hydrogenation of ethyl pyruvate over commercial alumina supported platinum catalyst. Most of these molecules induced only low enantiomeric excesses (ee). (S)-3-(1-methyl-indol-3-yl)-2-methylamino-propan-1-ol was found to be the most effective. Using this modifier under mild reaction conditions (1 bar hydrogen pressure, 273 K), enantiomeric excess up to 43% was obtained. Due to the transformation of the modifier evidenced by ESI-MS, a slight increase in hydrogen pressure led to a dramatic drop of enantioselectivity. An interesting inversion of the sense of enantioselectivity was observed in the case of this modifier when the reaction was carried out in acetic acid instead of toluene. A possible explanation for this phenomenon is proposed.  相似文献   

19.
Summary Carbon nanotube supported Pd, Ru and Pd-Ru catalysts have been prepared and tested with the hydrogenation of cinnamaldehyde as a probe reaction. It has been found that the cinnamaldehyde conversion and the selectivity towards the hydrogenation of C=O bond over Pd-Ru/PCNT catalyst could reach 56.6% and 79.1%, respectively, at 120oC and 5.0 MPa, which is better than Pd/PCNT and Ru/PCNT catalysts under the same reaction conditions. It is assumed that the better performance of Pd-Ru/PCNT catalyst for cinnamaldehyde hydrogenation may be due to the synergic effect of Pd and Ru metals or the promoting effect of Ru metal.  相似文献   

20.
王肖鹏  薛永强 《化学通报》2011,74(4):368-371
以纳米氧化镍与硫酸氢钠水溶液为反应体系,研究了不同粒度反应物反应的动力学参数,并讨论了粒度对动力学参数的影响.结果表明,反应物粒度对该反应的速率常数、指前因子和表观活化能均有显著的影响;随着反应物粒径的减小,速率常数增大,指前因子和表观活化能减小,且指前因子的对数和表观活化能分别与反应物粒径的倒数呈线性关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号