首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-n-Propyl-2-pyridylmethanimine, 1, N-n-octyl-2-pyridylmethanimine, 2, N-n-lauryl-2-pyridylmethanimine, 3, and N-n-octadecyl-2-pyridylmethanimine, 4 have been used in conjunction with copper(II) bromide and azo initiators for the reverse atom transfer radical polymerisation of a range of methacrylates. AIBN to CuIIBr2 ratios of 0.5:1, 0.75:1 and 1:1 give PMMA with Mn 11 500 g mol−1 (PDi = 1.24) (at 22% conversion), 12 500 g mol−1 (PDi = 1.06) (at 83% conversion) and 10 900 g mol−1 (PDi = 1.11) (at 84% conversion), respectively. A CuIIBr2 complex is demonstrated to be needed at the start of the reaction for good control over molecular weight and polydispersity as reactions using Cu(I)Br as catalyst yielded PMMA of Mn 31 000 g mol−1 (PDi = 2.90), reactions with no copper yield PMMA of Mn 33 000 g mol−1 (PDi = 2.95). The RATRP of styrene was carried out using CuIIBr2 as catalyst. AIBN to CuIIBr2 ratio of 0.5:1, 0.75:1 and 1:1 gave PS with Mn = 12 400 g mol−1 (PDi = 1.27) at low conversion, Mn = 15 500 g mol−1 (PDi = 1.11) and 12 400 g mol−1 (PDi = 1.38), respectively at ∼85% conversion. A series of block copolymers of MMA with BMA, BzMA and DMEAMA (15 600 g mol−1 (PDi = 1.18), 13 300 g mol−1 (PDi = 1.14) 15 300 g mol−1 (PDi) = 1.16), using a PMMA macroinitiator were prepared. Emulsion polymerisation of MMA using [initiator]:[Cu(II)Br2] ratio = 0.5:1 with Brij surfactant gave a linear increase of Mn with respect to conversion, final Mn = 112 800 g mol−1 (PDi = 1.42). Further reactions were carried out with [initiator]:[Cu(II)Br2] ratio = 0.75:1 and 1:1. Both giving PMMA with Mn ∼ 32 000 g mol−1 (PDi ∼ 2.4). These reactions exhibit no control, this is because the azo initiator is present in excess and all of the monomer is consumed by a free radical polymerisation as opposed to a controlled reaction. Particle size analysis (DLS) showed the particle size between 160 and170 nm in all cases.  相似文献   

2.
Specific heat capacities (Cp) of polycrystalline samples of BaCeO3 and BaZrO3 have been measured from about 1.6 K up to room temperature by means of adiabatic calorimetry. We provide corrected experimental data for the heat capacity of BaCeO3 in the range T < 10 K and, for the first time, contribute experimental data below 53 K for BaZrO3. Applying Debye's T3-law for T → 0 K, thermodynamic functions as molar entropy and enthalpy are derived by integration. We obtain Cp = 114.8 (±1.0) J mol−1 K−1, S° = 145.8 (±0.7) J mol−1 K−1 for BaCeO3 and Cp = 107.0 (±1.0) J mol−1 K−1, S° = 125.5 (±0.6) J mol−1 K−1 for BaZrO3 at 298.15 K. These results are in overall agreement with previously reported studies but slightly deviating, in both cases. Evaluations of Cp(T) yield Debye temperatures and identify deviations from the simple Debye-theory due to extra vibrational modes as well as anharmonicity. The anharmonicity turns out to be more pronounced at elevated temperatures for BaCeO3. The characteristic Debye temperatures determined at T = 0 K are Θ0 = 365 (±6) K for BaCeO3 and Θ0 = 402 (±9) K for BaZrO3.  相似文献   

3.
A new piezoelectric quartz crystal (PQC) sensor using molecularly imprinted polymer (MIP) as sensing material has been developed for fast and onsite determination of pirimicarb in contaminated vegetables. Three MIPs particles have been prepared by conventional bulk polymerization (MIP-B) and precipitation polymerization in either acetonitrile (MIP-P1) or chloroform (MIP-P2). MIP-P2, with uniform spherical shape and mean diameter at about 50 nm, has shown the best performance as the sensing material for PQC sensor. The sensor fabricated with MIP-P2 can achieve a steady-state response within 5 min, a very short response time as compared to MIPs-coated PQC sensor reported in the literature. The sensor developed exhibits good selectivity (low response to those pesticides with similar structures to pirimicarb, such as atrazine, carbaryl, carbofuran and aldicarb) and high sensitivity to pirimicarb with a linear working range from 5.0 × 10−6 to 4.7 × 10−3 mol L−1 (following a regression equation (r = 0.9988) of −ΔF = 0.552 + 1.79 × 106 C), a repeatability (R.S.D., n = 5) of 4.3% and a detection limit (S/N = 3, n = 5) of 5 × 10−7 mol L−1. The MIP-coated PQC sensor developed is shown to provide a sensitive and fast method for onsite determination of pirimicarb in aqueous extract from contaminated vegetables with satisfactory recoveries from 96 to 103% and repeatability (R.S.D., n = 5) from 4.6 to 7.1% at pirimicarb concentrations ranging from 8.0 × 10−6 to 2.0 × 10−4 mol L−1.  相似文献   

4.
Reaction between 3-((1R,2R)-2-{[1-(3,5-di-tert-butyl-2-hydroxy-phenyl)-meth-(E)-ylidene]-amino}-cyclohexyl)-1-isopropyl-4-phenyl-3H-imidazol-1-ium bromide (1a) or the derivative 3-((1R,2R)-2-{[1-(2-hydroxy-5-nitro-phenyl)-meth-(E)-ylidene]-amino}-cyclohexyl)-1-isopropyl-4-phenyl-3H-imidazol-1-ium bromide (1b) and metal halides MClx.yTHF (M = Zr, x = 4, y = 2; M = V, x = y = 3; M = Cr, x = y = 3), in THF, at −78 °C gives the metal complexes of general formula [MClx2-N,O-OC6H2R1R2C(H)N-C6H10-Im)2][Br]2 (where M = Zr, x = 2, R1 = R2 = tBu, 2; M = Zr, x = 2, R1 = H, R2 = NO2, 3; M = V, x = 1, R1 = R2 = tBu, 4; M = Cr, x = 1, R1 = R2 = tBu, 5; M = Fe, x = 0, R1 = R2 = tBu, 6; Im = 1-isopropyl-4-phenyl-3H-imidazol-1-ium-3-yl). 1H and 13C NMR spectroscopy of 2 and 3 indicate κ2-N,O-ligand coordination via the phenoxy-imine moiety with pendant imidazolium salt that is corroborated by a single crystal structure of 6. Compounds 2, 3, 4 and 5 were tested as precatalysts for ethylene polymerisation in the presence of methylaluminoxane (MAO) cocatalyst, showing low activity. Selected polymer samples were characterised by GPC showing multimodal molecular weight distributions.  相似文献   

5.
A new pentacoordinated ferrous compound [TPAFeCl]+ (TPA = tris(2-pyridylmethyl)amine) was synthesized from the reaction between H3TPA(ClO4)3 and Fe(PnPr3)2Cl2 in MeCN. The unique trigonal bipyramidal [TPAFeCl]+ complex was characterized as a S = 2 high spin complex based on the crystallographic structure, magnetic susceptibility, 1H NMR spectrum and semi-empirical ZINDO/S calculations. Crystal of [TPAFeCl]2(FeCl4)(MeCN)2 was monoclinic with a = 12.019(2) Å, b = 27.550(5) Å, c = 14.138(2) Å, β = 94.168(3)°, V = 4668.9(13) Å3, space group C/c, and the unit cell contained a racemic mixture of Δ and Λ isomers with ferrous tetrachloride anion.  相似文献   

6.
By self-assembly in aqueous solution, calix- (CAS) and thiacalix[4]arene-p-tetrasulfonate (TCAS) formed luminescent complexes TbIII·(CAS)2 and TbIII·TCAS, respectively, which were utilized as a host for cationic guests. Addition of 1-ethylpyridinium guest quenched luminescence of TbIII·(CAS)2 in accordance with the Stern-Volmer (SV) relation with a low detection limit (D.L.) of 5.94 × 10−8 M (S/N = 3, M ≡ mol dm−3). On the other hand, 1-ethylquinolinium quenched luminescence of TbIII·TCAS most efficiently, affording a very low D.L. (6.71 × 10−10 M). The agreement of the SV coefficients obtained with luminescent intensity (KSV,all = 6.74 × 106 M−1) and lifetime (KSV,Tb = 6.50 × 106 M−1) implied that dynamic quenching of 5D4 excited state of TbIII was predominant in the quenching processes. The quenching rate was estimated to be kq,Tb = 9.94 × 109 M−1 s−1, which was as fast as diffusion-limited rate. Quenching of TbIII·(CAS)2 was also applied to detection of NAD+, with a D.L. of 2.78 × 10−7 M.  相似文献   

7.
Co(II) complexes with 4,6-di(tert-butyl)-2-aminophenol (HLI) and 2-anilino-4,6-di(tert-butyl)phenol (HLII) have been synthesized and characterized by means of physico-chemical methods. The compounds HLI and HLII coordinate in their singly deprotonated forms and behave as bidentate O,N-coordinated ligands; their low-spin Co(II) complexes are characterized by CoN2O2 coordination modes and square planar geometry. Both the free ligands and their Co(II) and Cu(II) complexes (we have produced and characterized the latter before) exhibit a pronounced antifungal activity against Aspergillus niger, Fusarium spp., Mucor spp., Penicillium lividum, Botrytis cinerea, Alternaria alternata, Sclerotinia sclerotiorum, Monilia spp., which in a number of cases is comparable with that of Nystatin and Terbinafine or even higher. The reducing properties of the ligands and their metal(II) complexes, as well as their antifungal activities, were found to decrease in the order: Cu(LI)2 > Cu(LII)2 ? Co(LI)2 > Co(LII)2 > HLI > HLII.  相似文献   

8.
Potassium formate was extracted from airport storm water runoff by headspace solid-phase microextraction (HS-SPME) and analyzed by GC–MS. Formate was transformed to formic acid by adding phosphoric acid. Subsequently, formic acid was derivatized to methyl formate by adding methanol. Using sodium [2H]formate (formate-d) as an internal standard, the relative standard deviation of the peak area ratio of formate (m/z 60) and formate-d (m/z 61) was 0.6% at a concentration of 208.5 mg L−1. Calibration was linear in the range of 0.5–208.5 mg L−1. The detection limit calculated considering the blank value was 0.176 mg L−1. The mean concentration of potassium formate in airport storm water runoff collected after surface de-icing operations was 86.9 mg L−1 (n = 11) with concentrations ranging from 15.1 mg L−1 to 228.6 mg L−1.  相似文献   

9.
Vidotti EC  Costa WF  Oliveira CC 《Talanta》2006,68(3):516-521
A green chromatographic analytical method for determination of Tartrazine, Brilliant Blue and Sunset Yellow in food samples is proposed. The method is based on the modification of a C18 column with a 0.25% (v/v) Triton X-100 aqueous solution at pH 7 and in the usage of the same surfactant solution as mobile phase without the presence of any organic solvent modifier. After the separation process on the chromatographic column, the colorants are detected at 430, 630 and 480 nm, respectively. The chromatographic procedure yielded precise results and is able to run one sample in only 8 min, consuming 15.0 mg of Triton X-100 and 38.8 mg of phosphate. When the flow rate of the mobile phase is 1 ml min−1 the retention times are 2.1, 3.6 and 7.0 min for Tartrazine, Brilliant Blue and Sunset Yellow, respectively; and all peak resolutions are ca. 2. The analytical curves present the following linear equations: area = 7.44 105 + 2.71 105 [Tartrazine] (R = 0.998, n = 7); area = 1.09 105 + 3.75 105 [Brilliant] (R = 0.9995, n = 7) and area = −7.34 104 + 2.33 105 [Sunset] (R = 0.998), n = 7) and, the limits of detection for Tartrazine, Brilliant Blue and Sunset Yellow were estimated as 0.125, 0.080 and 0.143 mg l−1. When the proposed method is applied to food samples analysis, precise results are obtained (R.S.D. < 5%, n = 3) and in agreement with those obtained by using the classical spectrophotometric method. The traditional usage of organic solvent as mobile phase in HPLC is not used here, which permits to classify the present method as green.  相似文献   

10.
The kinetics of oxidative addition of CH3I to [Rh(FcCOCHCOCF3)(CO)(PPh3)], where Fc = ferrocenyl and (FcCOCHCOCF3) = fctfa = ferrocenoylacetonato, have been studied utilizing UV/Vis, IR, 1H and 31P NMR techniques. Three definite sets of reactions involving isomers of at least two distinctly different classes of RhIII-alkyl and two different classes of RhIII-acyl species were observed. Rate constants for this reaction in CHCl3 at 25 °C, applicable to the reaction sequence below, were determined as k1 = 0.00611(1) dm3 mol−1 s−1, k−1 = 0.0005(1) s−1, k3 = 0.00017(2) s−1 and k4 = 0.0000044(1) s−1 while k−3 ? k3 and k−4 ? k4 but both ≠0. The indeterminable equilibrium K2 was fast enough to be maintained during RhI depletion in the first set of reactions and during the RhIIIalkyl2 formation in the second set of reactions. From a 1H and 31P NMR study in CDCl3, Kc1 was found to be 0.68, Kc2 = 2.57, Kc3 = 1.00, Kc4 = 4.56 and Kc5 = 1.65.  相似文献   

11.
The kinetics of the radical reactions of CH3 with HCl or DCl and CD3 with HCl or DCl have been investigated in a temperature controlled tubular reactor coupled to a photoionization mass spectrometer. The CH3 (or CD3) radical, R, was produced homogeneously in the reactor by a pulsed 193 nm exciplex laser photolysis of CH3COCH3 (or CD3COCD3). The decay of CH3/CD3 was monitored as a function of HCl/DCl concentration under pseudo-first-order conditions to determine the rate constants as a function of temperature, typically from 188 to 500 K. The rate constants of the CH3 and CD3 reactions with HCl had strong non-Arrhenius behavior at low temperatures. The rate constants were fitted to a modified Arrhenius expression k = QA exp (−Ea/RT) (error limits stated are 1σ + Students t values, units in cm3 molecule−1 s−1): k(CH3 + HCl) = [1.004 + 85.64 exp (−0.02438 × T/K)] × (3.3 ± 1.3) × 10−13 exp [−(4.8 ± 0.6) kJ mol−1/RT] and k(CD3 + HCl) = [1.002 + 73.31 exp (−0.02505 × T/K)] × (2.7 ± 1.2) × 10−13 exp [−(3.5 ± 0.5) kJ mol−1/RT]. The radical reactions with DCl were studied separately over a wide ranges of temperatures and in these temperature ranges the rate constants determined were fitted to a conventional Arrhenius expression k = A exp (−Ea/RT) (error limits stated are 1σ + Students t values, units in cm3 molecule−1 s−1): k(CH3 + DCl) = (2.4 ± 1.6) × 10−13 exp [−(7.8 ± 1.4) kJ mol−1/RT] and k(CD3 + DCl) = (1.2 ± 0.4) × 10−13 exp [−(5.2 ± 0.2) kJ mol−1/RT] cm3 molecule−1 s−1.  相似文献   

12.
The preparation of the potassium salt of hexathiocyanate Re(IV) as a pure and crystalline solid is described. The crystal structure for [{K(H2O)2}2{Re(NCS)6}] (P21/c, a = 8.29132(8) Å, b = 15.0296(2) Å, c = 8.5249(1) Å, β = 90.885(1)°, V = 1062.21(2) Å3) revealed the formation of a 3-D coordination polymer based on K-S linkages. This organization leads to rather short intermolecular S···S contacts. The magnetic behavior for the compound is characterized by substantial antiferromagnetic interactions (with Curie-Weiss parameters C = 1.93 cm3mol−1 and θ = −171 K) that in turn lead to a weak ferromagnet with TC = 13 K.  相似文献   

13.
The photochemical reaction of W(CO)6 with diethylsilane has been used to generate new tungsten-silicon compounds varying in stability. The initially formed η2-silane intermediate complex [W(CO)52-H-SiHEt2)], characterized by two equal-intensity doublets with 2JH-H = 10 Hz at δ = 5.10 (1JSi-H = 217 Hz) and δ = −8.05 (1JW-H = 38 Hz, 1JSi-H = 93 Hz), was detected by the 1H NMR spectroscopy (methylcyclohexane-d14, −10 °C). The η2-silane complex was converted in the dark to give more stable species. One of them was characterized by two equal-intensity proton signals observed as doublets with 2JH-H = 5.2 Hz at δ = −8.25 and −10.39 ppm. The singlet proton resonance at δ = −9.31 flanked by 29Si and 183W satellites (1JSi-H = 43 Hz, 2JSi-H = 34 Hz, 1JW-H = 40 Hz) was assigned to the agostic proton of the W(η2-H-SiEt2) group in the most stable compound isolated from the photochemical reaction products in crystalline form. The molecular structure of the bis{(μ-η2-hydridodiethylsilyl)tetracarbonyltungsten(I)} complex [{W(μ-η2-H-SiEt2)(CO)4}2] was established by single-crystal X-ray diffraction studies. The tungsten hydride observed in the 1H NMR spectrum at δ = −9.31 was located in the structure at a chemically reasonable position between the W and Si atoms of the W-Si bond of the bridging silyl ligand. The reactivity of photochemically generated W-Si compounds towards norbornene, cyclopentene, diphenylacetylene, acetone, and water was studied. As was observed by IR and NMR spectroscopy, the η2-silane ligand in the complex [W(CO)52-H-SiHEt2)] is very easily replaced by an η2-olefin or η2-alkyne ligand.  相似文献   

14.
A novel biomimetic sensor for rutin determination based on a dinuclear complex [MnIIIMnII(Ldtb)(μ-OAc)2]BPh4 containing an unsymmetrical dinucleating ligand, 2-[N,N-bis(2-pyridylmethyl)-aminomethyl]-6-[N-(3,5-di-tert-butyl-2-oxidoben-zyl)-N-(2-pyridylamino)aminomethyl]-4-methylphenol (H2Ldtb), as a manganese peroxidase mimetic was developed. Several parameters were investigated to evaluate the performance of the biomimetic sensor obtained after the incorporation of the dinuclear complex in a carbon paste. The best performance was obtained in 75:15:10% (w/w/w) of the graphite powder:Nujol:MnIIIMnII complex, 0.1 mol L−1 phosphate buffer solution (pH 6.0) and 4.0 × 10−5 mol L−1 hydrogen peroxide. The response of the sensor towards rutin concentration was linear using square wave voltammetry in the range of 9.99 × 10−7 to 6.54 × 10−5 mol L−1 (r = 0.9998) with a detection limit of 1.75 × 10−7 mol L−1. The recovery study performed with pharmaceuticals ranged from 96.6% to 103.2% and the relative standard deviation was 1.85% for a solution containing 1.0 × 10−3 mol L−1 rutin (n = 6). The lifetime of this biomimetic sensor was 200 days (at least 750 determinations). The results obtained for rutin in pharmaceuticals using the biomimetic sensor and those obtained with the official method are in agreement at the 95% confidence level.  相似文献   

15.
Thanyarat Chuesaard 《Talanta》2009,79(4):1181-1187
An interfacing has been developed to connect a spectrophotometer with a personal computer and used as a readout system for development of a simple, rapid and sensitive reversed flow injection (rFI) procedure for chlorate determination. The method is based on the oxidation of indigo carmine by chlorate ions in an acidic solution (dil. HCl) leading to the decrease in absorbance at 610 nm. The decrease in absorbance is directly related to the chlorate concentration present in the sample solutions. Optimum conditions for chlorate were examined. A linear calibration graph over the range of 0.1-0.5 mg L−1 chlorate was established with the regression equation of Y = 104.5X + 1.0, r2 = 0.9961 (n = 6). The detection limit (3σ) of 0.03 mg L−1, the limit of quantitation (10σ) of 0.10 mg L−1 and the RSD of 3.2% for 0.3 mg L−1 chlorate (n = 11) together with a sample throughput of 92 h−1 were obtained. The recovery of the added chlorate in spiked water samples was 98.5 ± 3.1%. Major interferences for chlorate determination were found to be BrO3, ClO2, ClO and IO3 which were overcome by using SO32− (as Na2SO3) as masking agent. The method has been successfully applied for the determination of chlorate in spiked water samples with the minimum reagent consumption of 14.0 mL h−1. Good agreement between the proposed rFIA and the reference methods was found verified by Student's t-test at 95% confidence level.  相似文献   

16.
Melting reactions of Cu, CuCl, S, and Bi2S3 yield black, shiny needles of Cu22(1)Bi12S21(1)Cl16(1). The compound decomposes peritectically at 649(5) K. Oxidation state +I of the copper atoms is supported by Cu-K-XANES. The compound crystallizes in the hexagonal space group P6/m with a=2116.7(7) pm and c=395.17(5) pm. Seven anions coordinate each of the two independent bismuth cations in the shape of mono-capped trigonal prisms. These polyhedra share edges and faces to form trigonal and hexagonal tubes running along [0 0 1]. The hexagonal tubes are centered by chloride ions, which are surrounded by disordered copper cations. The majority of copper cations are distributed over numerous sites between the tubes. The Joint Probability Density Function (JPDF) reveals a continuous pathway along [0 0 1]. The high mobility of the copper cations along [0 0 1] was demonstrated by impedance spectroscopy and DC polarization measurements on single crystals. The ionic conductivity at 450 K is about σion=0.06 S cm−1, and the activation energy for Cu+ ion conduction is Ea=0.44 eV. The chemical diffusion coefficient of copper is in the order of Dcuδ=1019 cm−3 at 420 K. The electronic band gap (p-type conductor) was determined as Eg=0.06 eV. At room temperature the thermal conductivity of a pressed pellet is about κ=0.3 W K−1 m−1 and the Seebeck coefficient is S=43 μV K−1.  相似文献   

17.
A novel technique, high temperature headspace liquid-phase microextraction (HS-LPME) with room temperature ionic liquid (RTIL), 1-butyl-3-methylimidazolium hexafluorophosphate ([C4MIM][PF6]) as extractant, was developed for the analysis of dichlorodiphenyltrichloroethane (p,p′-DDT and o,p′-DDT) and its metabolites including 4,4′-dichlorodiphenyldichloroethylene (p,p′-DDE) and 4,4′-dichlorodiphenyldichloroethane (p,p′-DDD) in water samples by high performance liquid chromatography with ultraviolet detection. The parameters such as salt content, sample pH and temperature, stirring rate, extraction time, microdrop volume, and sample volume, were found to have significant influence on the HS-LPME. The conditions optimized for extraction of target compounds were as follows: 35% NaCl (w/v), neutral pH condition, 70 °C, 800 rpm, 30 min, 10 μL [C4MIM][PF6], and 25 mL sample solutions. Under the optimized conditions, the linear range, detection limit (S/N = 3), and precision (R.S.D., n = 6) were 0.3-30 μg L−1, 0.07 μg L−1, and 8.0% for p,p′-DDD, 0.3-30 μg L−1, 0.08 μg L−1, and 7.1% for p,p′-DDT, 0.3-30 μg L−1, 0.08 μg L−1, and 7.2% for o,p′-DDT, and 0.2-30 μg L−1, 0.05 μg L−1, and 6.8% for p,p′-DDE, respectively. Water samples including tap water, well water, snow water, reservoir water, and wastewater were analyzed by the proposed procedure and the recoveries at 5 μg L−1 spiked level were in the range of 86.8-102.6%.  相似文献   

18.
Complexes of general formula, [M(isa-sme)2] · n(solvate) [M = Ni2+, Cu2+, Zn2+, Cd2+; isa-sme = monoanionic form of the Schiff base formed by condensation of isatin with S-methyldithiocarbazate; n = 1 or 1.5; solvate = MeCN, DMSO, MeOH or H2O] have been synthesized and characterized by a variety of physicochemical techniques. An X-ray crystallographic structure determination of the [Ni(isa-sme)2] · MeCN complex reveals a six-coordinate, distorted octahedral geometry. The two uninegatively charged, tridentate, Schiff base ligands are coordinated to the nickel(II) ion meridionally via the amide O-atoms, the azomethine N-atoms and the thiolate S-atoms. By contrast, the crystal structure of [Zn(isa-sme)2] · MeOH shows a four-coordinate distorted tetrahedral geometry. The two dithiocarbazate ligands are coordinated as NS bidentate chelates with the amide O-atom not coordinated. The structure of the copper(II) complex [Cu(isa-sme)2] · DMSO is complicated and comprises two different complexes in the asymmetric unit, one four- and the other five-coordinate. The four-coordinate copper(II) has a distorted (flattened) tetrahedral geometry as seen in the Zn(II) analogue whereas the five-coordinate copper(II) has a distorted square-pyramidal geometry with one ligand coordinated to the copper(II) ion as a tridentate (NSO) ligand and the other coordinated as a bidentate NS chelate. EPR spectroscopy indicates that in solution only one form is present, that being a distorted tetrahedral complex.  相似文献   

19.
Dai XX  Li YF  He W  Long YF  Huang CZ 《Talanta》2006,70(3):578-583
A dual-wavelength resonance lighting scattering (DW-RLS) ratiometry is developed to detect anion biopolymer based on their bindings with cation surfactant. Using the interaction of Hyamine 1622 (HM) with fish sperm DNA (fsDNA) as an example, a dual-wavelength resonance light scattering (DW-RLS) ratiometric method of DNA was constructed. In Britton-Robinson buffer controlled medium, fish sperm DNA (fsDNA) could interact with Hyamine 1622 (HM), displaying significantly enhanced RLS signals. By measuring the RLS signals characterized at 300.0 nm (I300.0) and the RLS intensity ratio (I276.0/I294.0), respectively, fsDNA over a wide dynamic range of content could be detected. Typically, when HM concentration is kept at 6.0 × 10−5 mol l−1, using I300.0 could detect fsDNA over the range of 50-2000 ng ml−1 with the limit of 3.0 ng ml−1, while using I276.0/I294.0 could detect fsDNA over the range of 0.5-2500 ng ml−1 with the limit of 0.05 ng ml−1. Thus the latter so-called DW-RLS ratiometry is obviously superior to the former one. Based on the measurements of I300.0 and I276.0/I294.0 data, a Scatchard plot concerning the interaction between HM and fsDNA could be constructed and thus the binding number (n) and binding constant (K) could be available with the values of 13.5 and 1.35 × 105 mol−1 l, and 11.9 and 1.65 × 105 mol−1 l, respectively.  相似文献   

20.
N-thioamide thiosemicarbazone derived from 4-(methylthio)benzaldehyde (R = H, HL1; R = Me, HL2 and R = Ph, HL3) have been prepared and their reaction with fac-[ReX(CO)3(CH3CN)2] (X = Br, Cl) in methanol gave the adducts [ReX(CO)3(HLn)] (1a X = Cl, n = 1; 1a′ X = Br, n = 1; 1b X = Cl, n = 2; 1b′ X = Br, n = 2; 1c X = Cl, n = 3; 1c′ X = Br, n = 3) in good yield.All the compounds have been characterized by elemental analysis, mass spectrometry (ESI), IR and 1H NMR spectroscopic methods. Moreover, the structures of HL2, HL3, HL3·(CH3)2SO and 1b′·H2O were also elucidated by X-ray diffraction. In 1b′, the rhenium atom is coordinated by the sulphur and the azomethine nitrogen atoms (κS,N3) forming a five-membered chelate ring, as well as three carbonyl and bromide ligands. The resulting coordination polyhedron can be described as a distorted octahedron.The structure of the dimers is based on rhenium(I) thiosemicarbazonates [Re2(L1)2(CO)6] (2a), [Re2(L2)2(CO)6] (2b) and [Re2(L3)2(CO)6] (2c) as determined by X-ray studies. Methods of synthesis were optimized to obtain amounts of these thiosemicarbazonate complexes. In these compounds the dimer structures are achieved by Re-S-Re bridges, where S is the thiolate sulphur from a κS,N3-bidentate thiosemicarbazonate ligand.Some single crystals isolated in the synthesis of 2b contain [Re(L4)(L2)(CO)3] (3b) where L4 (=2-methylamine-5-(para-methylsulfanephenyl)-1,3,4-thiadiazole) is originated in a cyclization process of the thiosemicarbazone. Furthermore, the rhenium atom is coordinate by the sulphur and the thioamidic nitrogen of the thiosemicarbazonate (κS,N2) affording a four-membered chelate ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号