首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
James East 《Semigroup Forum》2010,81(2):357-379
The (full) transformation semigroup Tn\mathcal{T}_{n} is the semigroup of all functions from the finite set {1,…,n} to itself, under the operation of composition. The symmetric group Sn í Tn{\mathcal{S}_{n}\subseteq \mathcal{T}_{n}} is the group of all permutations on {1,…,n} and is the group of units of Tn\mathcal{T}_{n}. The complement Tn\Sn\mathcal{T}_{n}\setminus \mathcal{S}_{n} is a subsemigroup (indeed an ideal) of Tn\mathcal{T}_{n}. In this article we give a presentation, in terms of generators and relations, for Tn\Sn\mathcal{T}_{n}\setminus \mathcal{S}_{n}, the so-called singular part of Tn\mathcal{T}_{n}.  相似文献   

2.
The motivation for this paper comes from the Halperin–Carlsson conjecture for (real) moment-angle complexes. We first give an algebraic combinatorics formula for the M?bius transform of an abstract simplicial complex K on [m]={1,…,m} in terms of the Betti numbers of the Stanley–Reisner face ring k(K) of K over a field k. We then employ a way of compressing K to provide the lower bound on the sum of those Betti numbers using our formula. Next we consider a class of generalized moment-angle complexes ZK(\mathbb D, \mathbb S)\mathcal{Z}_{K}^{(\underline{\mathbb{ D}}, \underline{\mathbb{ S}})}, including the moment-angle complex ZK\mathcal{Z}_{K} and the real moment-angle complex \mathbbRZK\mathbb{R}\mathcal {Z}_{K} as special examples. We show that H*(ZK(\mathbb D, \mathbb S);k)H^{*}(\mathcal{Z}_{K}^{(\underline{\mathbb{ D}}, \underline{\mathbb{ S}})};\mathbf{k}) has the same graded k-module structure as Tor  k[v](k(K),k). Finally we show that the Halperin–Carlsson conjecture holds for ZK\mathcal{Z}_{K} (resp. \mathbb RZK\mathbb{ R}\mathcal{Z}_{K}) under the restriction of the natural T m -action on ZK\mathcal{Z}_{K} (resp. (ℤ2) m -action on \mathbb RZK\mathbb{ R}\mathcal{Z}_{K}).  相似文献   

3.
We introduce a spanning set of Beilinson–Lusztig–MacPherson type, {A(j, r)} A,j , for affine quantum Schur algebras S\vartriangle(n, r){{{\boldsymbol{\mathcal S}}_\vartriangle}(n, r)} and construct a linearly independent set {A(j)} A,j for an associated algebra [^(K)]\vartriangle(n){{{\boldsymbol{\widehat{\mathcal K}}}_\vartriangle}(n)} . We then establish explicitly some multiplication formulas of simple generators E\vartriangleh,h+1(0){E^\vartriangle_{h,h+1}}(\mathbf{0}) by an arbitrary element A(j) in [^(K)]\vartriangle(n){{\boldsymbol{\widehat{{{\mathcal K}}}}_\vartriangle(n)}} via the corresponding formulas in S\vartriangle(n, r){{{\boldsymbol{\mathcal S}}_\vartriangle(n, r)}} , and compare these formulas with the multiplication formulas between a simple module and an arbitrary module in the Ringel–Hall algebras \mathfrak H\vartriangle(n){{{\boldsymbol{\mathfrak H}_\vartriangle(n)}}} associated with cyclic quivers. This allows us to use the triangular relation between monomial and PBW type bases for \mathfrak H\vartriangle(n){{\boldsymbol{\mathfrak H}}_\vartriangle}(n) established in Deng and Du (Adv Math 191:276–304, 2005) to derive similar triangular relations for S\vartriangle(n, r){{{\boldsymbol{\mathcal S}}_\vartriangle}(n, r)} and [^(K)]\vartriangle(n){{\boldsymbol{\widehat{\mathcal K}}}_\vartriangle}(n) . Using these relations, we then show that the subspace \mathfrak A\vartriangle(n){{{\boldsymbol{\mathfrak A}}_\vartriangle}(n)} of [^(K)]\vartriangle(n){{\boldsymbol{\widehat{{{\mathcal K}}}}_\vartriangle}(n)} spanned by {A(j)} A,j contains the quantum enveloping algebra U\vartriangle(n){{{\mathbf U}_\vartriangle}(n)} of affine type A as a subalgebra. As an application, we prove that, when this construction is applied to quantum Schur algebras S(n,r){\boldsymbol{\mathcal S}(n,r)} , the resulting subspace \mathfrak A\vartriangle(n){{{{\boldsymbol{\mathfrak A}}_\vartriangle}(n)}} is in fact a subalgebra which is isomorphic to the quantum enveloping algebra of \mathfrakgln{\mathfrak{gl}_n} . We conjecture that \mathfrak A\vartriangle(n){{{{{\boldsymbol{\mathfrak A}}_\vartriangle}(n)}}} is a subalgebra of [^(K)]\vartriangle(n){{\boldsymbol{\widehat{{{\mathcal K}}}}_\vartriangle}(n)} .  相似文献   

4.
Let Hk\mathcal{H}_{k} denote the set {n∣2|n, n\not o 1 (mod p)n\not\equiv 1\ (\mathrm{mod}\ p) ∀ p>2 with p−1|k}. We prove that when X\frac1120(1-\frac12k) +e\leqq H\leqq XX^{\frac{11}{20}\left(1-\frac{1}{2k}\right) +\varepsilon}\leqq H\leqq X, almost all integers n ? \allowbreak Hk ?(X, X+H]n\in\allowbreak {\mathcal{H}_{k} \cap (X, X+H]} can be represented as the sum of a prime and a k-th power of prime for k≧3. Moreover, when X\frac1120(1-\frac1k) +e\leqq H\leqq XX^{\frac{11}{20}\left(1-\frac{1}{k}\right) +\varepsilon}\leqq H\leqq X, almost all integers n∈(X,X+H] can be represented as the sum of a prime and a k-th power of integer for k≧3.  相似文献   

5.
In this paper we give the conditions on the pair (ω 1, ω 2) which ensures the boundedness of the anisotropic maximal operator and anisotropic singular integral operators from one generalized Morrey space Mp,w1 \mathcal{M}_{p,\omega _1 } to another Mp,w2 \mathcal{M}_{p,\omega _2 }, 1 < p < g8, and from the space M1,w1 \mathcal{M}_{1,\omega _1 } to the weak space WM1,w2 W\mathcal{M}_{1,\omega _2 }.  相似文献   

6.
We construct explicit generating sets S n and of the alternating and the symmetric groups, which turn the Cayley graphs and into a family of bounded degree expanders for all n.  相似文献   

7.
Let ω,ω 0 be appropriate weight functions and q∈[1,∞]. We introduce the wave-front set, WFFLq(w)(f)\mathrm{WF}_{\mathcal{F}L^{q}_{(\omega)}}(f) of f ? S¢f\in \mathcal{S}' with respect to weighted Fourier Lebesgue space FLq(w)\mathcal{F}L^{q}_{(\omega )}. We prove that usual mapping properties for pseudo-differential operators Op (a) with symbols a in S(w0)r,0S^{(\omega _{0})}_{\rho ,0} hold for such wave-front sets. Especially we prove that
$[b]{lll}\mathrm{WF}_{\mathcal{F}L^q_{(\omega /\omega _0)}}(\operatorname {Op}(a)f)&\subseteq&\mathrm{WF}_{\mathcal{F}L^q_{(\omega )}}(f)\\[6pt]&\subseteq&\mathrm{WF}_{\mathcal{F}L^q_{(\omega/\omega _0)}}(\operatorname {Op}(a)f)\cup \operatorname {Char}(a).$\begin{array}[b]{lll}\mathrm{WF}_{\mathcal{F}L^q_{(\omega /\omega _0)}}(\operatorname {Op}(a)f)&\subseteq&\mathrm{WF}_{\mathcal{F}L^q_{(\omega )}}(f)\\[6pt]&\subseteq&\mathrm{WF}_{\mathcal{F}L^q_{(\omega/\omega _0)}}(\operatorname {Op}(a)f)\cup \operatorname {Char}(a).\end{array}  相似文献   

8.
This paper continues recent investigations started in Dyukarev et al. (Complex anal oper theory 3(4):759–834, 2009) into the structure of the set Hq,2n 3 {\mathcal{H}_{q,2n}^{\ge}} of all Hankel nonnegative definite sequences, (sj)j=02n{(s_{j})_{j=0}^{2n}}, of complex q × q matrices and its important subclasses Hq,2n 3 ,e{\mathcal{H}_{q,2n}^{\ge,{\rm e}}} and ${\mathcal{H}_{q,2n}^>}${\mathcal{H}_{q,2n}^>} of all Hankel nonnegative definite extendable sequences and of all Hankel positive definite sequences, respectively. These classes of sequences arise quite naturally in the framework of matrix versions of the truncated Hamburger moment problem. In Dyukarev et al. (Complex anal oper theory 3(4):759–834, 2009) a canonical Hankel parametrization [(Ck)k=1n, (Dk)k=0n]{[(C_k)_{k=1}^n, (D_k)_{k=0}^n]} consisting of two sequences of complex q × q matrices was associated with an arbitrary sequence (sj)j=02n{(s_{j})_{j=0}^{2n}} of complex q × q matrices. The sequences belonging to each of the classes Hq,2n 3 , Hq,2n 3 ,e{\mathcal{H}_{q,2n}^{\ge}, \mathcal{H}_{q,2n}^{\ge,{\rm e}}}, and ${\mathcal{H}_{q,2n}^>}${\mathcal{H}_{q,2n}^>} were characterized in terms of their canonical Hankel parametrization (see, Dyukarev et al. in Complex anal oper theory 3(4):759–834, 2009; Proposition 2.30). In this paper, we will study further aspects of the canonical Hankel parametrization. Using the canonical Hankel parametrization [(Ck)k=1n, (Dk)k=0n]{[(C_k)_{k=1}^n, (D_k)_{k=0}^n]} of a sequence (sj)j=02n ? Hq,2n 3 {(s_{j})_{j=0}^{2n} \in \mathcal{H}_{q,2n}^{\ge}}, we give a recursive construction of a monic right (resp. left) orthogonal system of matrix polynomials with respect to (sj)j=02n{(s_{j})_{j=0}^{2n}} (see Theorem 5.5). The matrices [(Ck)k=1n, (Dk)k=0n]{[(C_k)_{k=1}^n, (D_k)_{k=0}^n]} will be expressed in terms of an arbitrary monic right (resp. left) orthogonal system with respect to (sj)j=02n{(s_{j})_{j=0}^{2n}} (see Theorem 5.11). This result will be reformulated in terms of nonnegative Hermitian Borel measures on \mathbbR{\mathbb{R}}. In this way, integral representations for the matrices [(Ck)k=1n, (Dk)k=0n]{[(C_k)_{k=1}^n, (D_k)_{k=0}^n]} will be obtained (see Theorem 6.9). Starting from the monic orthogonal polynomials with respect to some classical probability distributions on \mathbbR{\mathbb{R}}, Theorem 6.9 is used to compute the canonical Hankel parametrization of their moment sequences. Moreover, we discuss important number sequences from enumerative combinatorics using the canonical Hankel parametrization.  相似文献   

9.
A. Krajka 《Acta Appl Math》2007,96(1-3):327-338
Let be a probability space with a nonatomic measure P and let (S,ρ) be a separable complete metric space. Let {N n ,n≥1} be an arbitrary sequence of positive-integer valued random variables. Let {F k ,k≥1} be a family of probability laws and let X be some random element defined on and taking values in (S,ρ). In this paper we present necessary and sufficient conditions under which one can construct an array of random elements {X n,k ,n,k≥1} defined on the same probability space and taking values in (S,ρ), and such that , and moreover as  n→∞. Furthermore, we consider the speed of convergence to X as n→∞.   相似文献   

10.
Fix any n≥1. Let X 1,…,X n be independent random variables such that S n =X 1+⋅⋅⋅+X n , and let S*n=sup1 £ knSkS^{*}_{n}=\sup_{1\le k\le n}S_{k} . We construct upper and lower bounds for s y and sy*s_{y}^{*} , the upper \frac1y\frac{1}{y} th quantiles of S n and S*nS^{*}_{n} , respectively. Our approximations rely on a computable quantity Q y and an explicit universal constant γ y , the latter depending only on y, for which we prove that
${l}\displaystyle s_y\le s_y^*\le Q_y\quad\mbox{for }y>1,\\[4pt]\displaystyle \gamma_{3y/16}Q_{3y/16}-Q_1\le s_y^*\quad\mbox{for }y>\frac{32}{3},$\begin{array}{l}\displaystyle s_y\le s_y^*\le Q_y\quad\mbox{for }y>1,\\[4pt]\displaystyle \gamma_{3y/16}Q_{3y/16}-Q_1\le s_y^*\quad\mbox{for }y>\frac{32}{3},\end{array}  相似文献   

11.
12.
Summary LetS i have the Wishart distributionW p(∑i,ni) fori=1,2. An asymptotic expansion of the distribution of for large n=n1+n2 is derived, when 12 −1 =I+n−1/2θ, based on an asymptotic solution of the system of partial differential equations for the hypergeometric function2 F 1, obtained recently by Muirhead [2]. Another asymptotic formula is also applied to the distributions of −2 log λ and −log|S 2(S 1+S 2)−1| under fixed 12 −1 , which gives the earlier results by Nagao [4]. Some useful asymptotic formulas for1 F 1 were investigated by Sugiura [7].  相似文献   

13.
It is proved that if positive definite matrix functions (i.e. matrix spectral densities) S n , n=1,2,… , are convergent in the L 1-norm, ||Sn-S||L1? 0\|S_{n}-S\|_{L_{1}}\to 0, and ò02plogdetSn(eiqdq?ò02plogdetS(eiqdq\int_{0}^{2\pi}\log \mathop{\mathrm{det}}S_{n}(e^{i\theta})\,d\theta\to\int_{0}^{2\pi}\log \mathop{\mathrm{det}}S(e^{i\theta})\,d\theta, then the corresponding (canonical) spectral factors are convergent in L 2, ||S+n-S+||L2? 0\|S^{+}_{n}-S^{+}\|_{L_{2}}\to 0. The formulated logarithmic condition is easily seen to be necessary for the latter convergence to take place.  相似文献   

14.
Ifμ is a positive measure, andA 2, ...,A n are measurable sets, the sequencesS 0, ...,S n andP [0], ...,P [n] are related by the inclusion-exclusion equalities. Inequalities among theS i are based on the obviousP [k]≧0. Letting =the average average measure of the intersection ofk of the setsA i , it is shown that (−1) k Δ k M i ≧0 fori+kn. The casek=1 yields Fréchet’s inequalities, andk=2 yields Gumbel’s and K. L. Chung’s inequalities. Generalizations are given involvingk-th order divided differences. Using convexity arguments, it is shown that forS 0=1, whenS 1N−1, and for 1≦k<Nn andv=0, 1, .... Asymptotic results asn → ∞ are obtained. In particular it is shown that for fixedN, for all sequencesM 0, ...,M n of sufficiently large length if and only if for 0<t<1.  相似文献   

15.
If a monoid S is given by some finite complete presentation ℘, we construct inductively a chain of CW-complexes
such that Δ n has dimension n, for every 2≤mn, the m-skeleton of Δ n is Δ m , and p m are critical (m+1)-cells with 1≤mn−2. For every 2≤mn−1, the following is an exact sequence of (ℤS,ℤS)-bimodules
where if m=2. We then use these sequences to obtain a free finitely generated bimodule partial resolution of ℤS. Also we show that for groups properties FDT and FHT coincide.  相似文献   

16.
For each n > 1 and each multiplicative closed set of integers S, we study closed model category structures on the pointed category of topological spaces, where the classes of weak equivalences are classes of maps inducing isomorphism on homotopy groups with coefficients in determined torsion abelian groups, in degrees higher than or equal to n. We take coefficients either on all the cyclic groups with sS, or in the abelian group where is the group of fractions of the form with sS. In the first case, for n > 1 the localized category is equivalent to the ordinary homotopy category of (n − 1)-connected CW-complexes whose homotopy groups are S-torsion. In the second case, for n > 1 we obtain that the localized category is equivalent to the ordinary homotopy category of (n − 1)-connected CW-complexes whose homotopy groups are S-torsion and the nth homotopy group is divisible. These equivalences of categories are given by colocalizations , obtained by cofibrant approximations on the model structures. These colocalization maps have nice universal properties. For instance, the map is final (in the homotopy category) among all the maps of the form YX with Y an (n − 1)-connected CW-complex whose homotopy groups are S-torsion and its nth homotopy group is divisible. The spaces , are constructed using the cones of Moore spaces of the form M(T, k), where T is a coefficient group of the corresponding structure of models, and homotopy colimits indexed by a suitable ordinal. If S is generated by a set P of primes and S p is generated by a prime pP one has that for n > 1 the category is equivalent to the product category . If the multiplicative system S is generated by a finite set of primes, then localized category is equivalent to the homotopy category of n-connected Ext-S-complete CW-complexes and a similar result is obtained for .  相似文献   

17.
Let X1, X2,... be, i.i.d. random variables, and put . We find necessary and sufficient moment conditions for , where δ≥ 0 and q>0, and with an>0 and bn is either or The series f(x) we deal with are classical series studied by Hsu and Robbins, Erdős, Spitzer, Baum and Katz, Davis, Lai, Gut, etc  相似文献   

18.
In this paper, we introduce the subfamilies H m ($ \mathcal{R}_{IV} $ \mathcal{R}_{IV} (n)) of holomorphic mappings defined on the Lie ball $ \mathcal{R}_{IV} $ \mathcal{R}_{IV} (n) which reduce to the family of holomorphic mappings and the family of locally biholomorphic mappings when m = 1 and m → +∞, respectively. Various distortion theorems for holomophic mappings H m ($ \mathcal{R}_{IV} $ \mathcal{R}_{IV} (n)) are established. The distortion theorems coincide with Liu and Minda’s as the special case of the unit disk. When m = 1 and m → +∞, the distortion theorems reduce to the results obtained by Gong for $ \mathcal{R}_{IV} $ \mathcal{R}_{IV} (n), respectively. Moreover, our method is different. As an application, the bounds for Bloch constants of H m ($ \mathcal{R}_{IV} $ \mathcal{R}_{IV} (n)) are given.  相似文献   

19.
We extend the scalar curvature pinching theorems due to Peng-Terng, Wei-Xu and Suh-Yang. Let M be an n-dimensional compact minimal hypersurface in S n+1 satisfying Sf 4 f_3~2 ≤ 1/n S~3 , where S is the squared norm of the second fundamental form of M, and f_k =sum λ_i~k from i and λ_i (1 ≤ i ≤ n) are the principal curvatures of M. We prove that there exists a positive constant δ(n)(≥ n/2) depending only on n such that if n ≤ S ≤ n + δ(n), then S ≡ n, i.e., M is one of the Clifford torus S~k ((k/n)~1/2 ) ×S~...  相似文献   

20.
Let k be a field and E(n) be the 2 n+1-dimensional pointed Hopf algebra over k constructed by Beattie, Dăscălescu and Grünenfelder [J. Algebra, 2000, 225: 743–770]. E(n) is a triangular Hopf algebra with a family of triangular structures R M parameterized by symmetric matrices M in M n (k). In this paper, we study the Azumaya algebras in the braided monoidal category $ E_{(n)} \mathcal{M}^{R_M } $ E_{(n)} \mathcal{M}^{R_M } and obtain the structure theorems for Azumaya algebras in the category $ E_{(n)} \mathcal{M}^{R_M } $ E_{(n)} \mathcal{M}^{R_M } , where M is any symmetric n×n matrix over k.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号