首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sub-ppm hydrogen chloride (HCl) and water vapour (H2O) monitoring using photoacoustic spectroscopy in optical fibre manufacturing is reported. The development and performance of a sensor based on an acoustic resonant configuration is described, and on-site measurements are presented. Two DFB lasers emitting in the 1370 nm and 1740 nm range were used for the detection of H2O and HCl, respectively. A detection limit (defined for a SNR=3) of 60 ppb for HCl and 40 ppb for H2O was achieved. Contamination sources of the carrier gas used for the fibre preform manufacturing are identified and discussed. PACS 42.62.Fi; 43.35.Ud  相似文献   

2.
Catalytic degradation and diffusion processes of NO2 were followed by cavity-ring-down spectroscopy (CRDS) at 612.9 nm. The suitability of this absorption method for quasi-continuous, direct quantitative measurements over extended periods of time is demonstrated. The high sensitivity of the method is reflected by the fact that NO2 concentrations as low as 200 ppb were detected at wavelengths at which the absorption of NO2 is 12-fold lower than at the absorption maximum at 413 nm. Absorption coefficients of less than 1×10-7 cm-1 were measured. Received: 25 February 2000 / Revised version: 4 August 2000 / Published online: 5 October 2000  相似文献   

3.
The results are reported of the CO-laser optothermal (OT) detection of impurity gases when their absorption spectra overlap with those of an interfering gas. The influence of the latter was avoided using low gas pressures corresponding to a maximum of the OT sensitivity. Frequency tuned in the 5.2–6.3 m wavelength range, 12C16O and 13C16O waveguide lasers were used. The fine frequency tuning at 490 MHz was achieved for 150 laser transitions of both molecules. The OT sensitivity was estimated by NO2 detection in the presence of water vapor. The minimal detectable concentration proved to be 60 ppb at P 19–18(14) transition of a 12C16O laser for NO2 and 75 ppb on P 12–11(13) transition of a 13C16O laser for H2O.  相似文献   

4.
Room temperature (RT) quantum cascade lasers (QCL) are now available even in continuous wave (cw) mode, which is very promising for in situ gas detectors. Ambient air monitoring requires high sensitivity with robust and simple apparatus. For that purpose, a compact photoacoustic setup was combined with two cw QCLs to measure ambient methane and nitrous oxide in the 8 μm range. The first laser had already been used to calibrate the sensitivity of the photoacoustic cell and a detection limit of 3 ppb of CH4 with a 1s integration time per point was demonstrated. In situ monitoring with this laser was difficult because of liquid nitrogen cooling. The second laser is a new RT cw QCL with lower power, which enabled one to reach a detection limit of 34 ppb of methane in flow. The loss in sensitivity is mainly due to the weaker power as photoacoustic signal is proportional to light power. The calibration for methane detection leads to an estimated detection limit of 14 ppb for N2O flux measurements. Various ways of modulation have been tested. The possibility to monitor ambient air CH4 and N2O at ground level with this PA spectrometer was demonstrated in flux with these QCLs. PACS 07.88; 92.60.Sz  相似文献   

5.
本文应用基于二极管激光器的双路光腔衰荡光谱技术,分别对大气中NO3和N2O5浓度进行监测. 通过使用实验室标准样校正有效吸收腔长比RL和系统的总损耗系数?,并获得了NO3有效吸收截面. 该装置在时间分辨率为1 s时,对NO3的测量灵敏度达到1.1 pptv,N2O5被在线转换成NO3,从而被另一路光腔衰荡光谱装置探测. 利用该装置,对合肥市区冬季夜间大气中的NO3,N2O5浓度进行了实时监测. 通过对比一次大气快速清洁过程中氮氧化物、臭氧、PM2.5等组分的浓度变化,讨论了大气环境下可能影响NO3及N2O5浓度的因素.  相似文献   

6.
A simple and reliable method is presented for optimizing the mode matching of a laser beam to the high-finesse cavity used in pulsed cavity ringdown spectroscopy (CRDS). The method is based on minimizing the excitation of higher-order transverse cavity modes through monitoring the non-degenerate transverse mode beating which becomes visible with induced cavity asymmetry caused by slight misalignment. No additional instrument is required other than a pinhole aperture, thus this method can be applied for CRDS experiments in the whole wavelength range. Measurements of the CRDS absorption spectrum of acetylene (C2H2) near 571 nm demonstrate that the mode-matching optimization improves the sensitivity of pulsed CRDS. Received: 22 October 2001 / Revised version: 16 January 2002 / Published online: 14 March 2002  相似文献   

7.
A two-channel thermal dissociation cavity ring down spectroscopy (CRDS) instrument has been built for in situ, real-time measurement of NO2 and total RNO2 (peroxy nitrates and alkyl nitrates) in ambient air, with a NO2 detection limit of 0.10 ppbv at 1 s. A 6-day long measurement was conducted at urban site of Hefei by using the CRDS instrument with a time resolution of 3 s. A commercial molybdenum converted chemiluminescence (Mo-CL) instrument was also used for comparison. The average RNO2 concentration in the 6 days was measured to be 1.94 ppbv. The Mo-CL instrument overestimated the NO2 concentration by a bias of +1.69 ppbv in average, for the reason that it cannot distinguish RNO2 from NO2. The relative bias could be over 100% during the afternoon hours when NO2 was low but RNO2 was high.  相似文献   

8.
The paper presents a signal processing system used for nitrogen dioxide detection employing cavity enhanced absorption spectroscopy. In this system, the absorbing gas concentration is determined by the measurement of a decay time of a light pulse trapped in a cavity. The setup includes a resonance optical cavity, which was equipped with spherical and high reflectance mirrors, the pulsed diode laser (414 nm) and electronic signal processing system. In order to ensure registration of low-level signals and accurate decay time measurements, special preamplifier and digital signal processing circuit were developed. Theoretical analyses of main parameters of optical cavity and signal processing system were presented and especially signal-to-noise ratio was taken into consideration. Furthermore, investigation of S/N signal processing system and influence of preamplifier feedback resistance on the useful signal distortion were described. The aim of the experiment was to study potential application of cavity enhanced absorption spectroscopy for construction of fully optoelectronic NO2 sensor which could replace, e.g., commonly used chemical detectors. Thanks to the developed signal processing system, detection limit of NO2 sensor reaches the value of 0.2 ppb (absorption coefficient equivalent = 2.8 × 10−9 cm−1).  相似文献   

9.
The progress in the development of a sensor for the detection of trace air constituents to monitor spacecraft air quality is reported. A continuous-wave (cw), external-cavity tunable diode laser centered at 1.55 μm is used to pump an optical cavity absorption cell in cw-cavity ringdown spectroscopy (cw-CRDS). Preliminary results are presented that demonstrate the sensitivity, selectivity and reproducibility of this method. Detection limits of 2.0 ppm for CO, 2.5 ppm for CO2, 1.8 ppm for H2O, 19.4 ppb for NH3, 7.9 ppb for HCN and 4.0 ppb for C2H2 are calculated. Received: 3 April 2002 / Revised version: 3 June 2002 / Published online: 21 August 2002 RID="*" ID="*"Corresponding author. Fax: +1-202/994-5873, E-mail: Houston@gwu.edu  相似文献   

10.
A quantum cascade laser (QCL)-based absorption sensor for the simultaneous dual-species monitoring of CH4 and N2O was developed using a novel compact multipass gas cell (MGC). This sensor uses a thermoelectrically cooled, continuous wave, distributed feedback QCL operating at ~7.8 µm. The QCL wavelength was scanned over two neighboring CH4 (1275.04 cm?1) and N2O (1274.61 cm?1) lines at a 1 Hz repetition rate. Wavelength modulation spectroscopy (f = 10 kHz) with second harmonic (2f) detection was performed to enhance the signal-to-noise ratio. An ultra-compact MGC (16.9 cm long and a 225 ml sampling volume) was utilized to achieve an effective optical path length of 57.6 m. With such a sensor configuration, a detection limit of 5.9 ppb for CH4 and 2.6 ppb for N2O was achieved, respectively, at 1-s averaging time.  相似文献   

11.
Intracavity laser absorption spectroscopy (ICLAS) and cavity ring-down spectroscopy (CRDS) have been used for measurement of the NH2-radical spectrum near 643 nm. NH2 was obtained in low-pressure methane/air flat flames doped with minor amounts of ammonia (as low as 0.023%). The NH2 concentration was measured both by CRDS and ICLAS in the same conditions. This enables us to compare the practical sensitivity of the two methods. Both methods were also used for measurements in a sooting acetylene/air flame (ϕ = 2.6). The comparative advantages of the methods and their complementarities are discussed.  相似文献   

12.
The main characteristics that a sensor must possess for trace gas detection and pollution monitoring are high sensitivity, high selectivity and the capability to perform in situ measurements. The photacoustic Helmholtz sensor developed in Reims, used in conjunction with powerful Quantum Cascade Lasers (QCLs), fulfils all these requirements. The best cell response is # 1200 V W−1 cm and the corresponding ultimate sensitivity is j 3.3 × 10−10 W cm−11 Hz−11/2. This efficient sensor is used with mid-infrared QCLs from Alpes Lasers to reach the strong fundamental absorption bands of some atmospheric gases. A first cryogenic QCL emitting at 7.9 μm demonstrates the detection of methane in air with a detection limit of 3 ppb. A detection limit of 20 ppb of NO in air is demonstrated using another cryogenic QCL emitting in the 5.4 μm region. Real in-situ measurements can be achieved only with room-temperature QCLs. A room-temperature QCL emitting in the 7.9 μm region demonstrates the simultaneous detection of methane and nitrous oxide in air (17 and 7 ppb detection limit, respectively). All these reliable measurements allow the estimated detection limit for various atmospheric gases using quantum cascade lasers to be obtained. Each gas absorbing in the infrared may be detected at a detection limit in the ppb or low-ppb range.  相似文献   

13.
Tunable diode laser absorption spectroscopy sensors for detection of CO, CO2, CH4 and H2O at elevated pressures in mixtures of synthesis gas (syngas: products of coal and/or biomass gasification) were developed and tested. Wavelength modulation spectroscopy (WMS) with 1f-normalized 2f detection was employed. Fiber-coupled DFB diode lasers operating at 2325, 2017, 2290 and 1352 nm were used for simultaneously measuring CO, CO2, CH4 and H2O, respectively. Criteria for the selection of transitions were developed, and transitions were selected to optimize the signal and minimize interference from other species. For quantitative WMS measurements, the collision-broadening coefficients of the selected transitions were determined for collisions with possible syngas components, namely CO, CO2, CH4, H2O, N2 and H2. Sample measurements were performed for each species in gas cells at a temperature of 25 °C up to pressures of 20 atm. To validate the sensor performance, the composition of synthetic syngas was determined by the absorption sensor and compared with the known values. A method of estimating the lower heating value and Wobbe index of the syngas mixture from these measurements was also demonstrated.  相似文献   

14.
The design and validation of a tunable diode laser (TDL) sensor for temperature and H2O in high-pressure and -temperature gases are presented. High-fidelity measurements are enabled through the use of: (1) strong H2O fundamental-band absorption near 2.5 μm, (2) calibration-free first-harmonic-normalized wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f/1f), (3) an experimentally derived and validated spectroscopic database, and (4) a new approach to selecting the optimal wavelength and modulation depth of each laser. This sensor uses two TDLs near 2,474 and 2,482 nm that were fiber coupled in free space and frequency multiplexed to enable measurements along a single line-of-sight. The lasers were modulated at 35 and 45.5 kHz, respectively, to achieve a sensor bandwidth of 4.5 kHz. This sensor was validated in a shock tube at temperatures and pressures ranging from 1,000 to 2,700 K and 8 to 50 bar. There the sensor resolved transients and recovered the known steady-state temperature and H2O mole fraction with a precision of 3.2 and 2.6 % RMS, respectively.  相似文献   

15.
Abstract

A fiber-optic chemical sensor (FOCS) for detection of nitrogen dioxide (NO 2 ) molecules is reported. The FOCS presents an optropode structure because of the transmission properties of the sensitive material. The NO 2 FOCS is activated by using the semiconductor polymer: regioregular head-to-tail poly(3-octylthiophene-2,5-diyl). The operation wavelength of the sensor is 543.5 nm such that a simple LED and detector can be used for the design of this device. The sensor response decreases after each exposure, demonstrating the reduction in sensitivity as well as irreversibility lower than 5%. However, its properties such as rapid response, high selectivity, high sensitivity (0.43 ± 0.01 muW/ppm), hygroscopic properties, and its operation at room temperature make this kind of FOCS a good alternative for NO 2 toxic gas detection.  相似文献   

16.
A photoacoustic sensor using a laser diode emitting near 1532 nm in combination with an erbium-doped fibre amplifier has been developed for ammonia trace gas analysis at atmospheric pressure. NH3 concentration measurements down to 6 ppb and a noise-equivalent detection limit below 3 ppb in dry air are demonstrated. Two wavelength-modulation schemes with 1f and 2f detection using a lock-in amplifier were investigated and compared to maximise the signal-to-noise ratio. A quantitative analysis of CO2 and H2O interference with NH3 is presented. Typical concentrations present in ambient air of 400 ppm CO2 and 1.15% H2O (50% relative humidity at 20 °C) result in a NH3 equivalent concentration of 36 ppb and 100 ppb, respectively. PACS 42.62.Fi; 43.35.Ud; 42.55.Px  相似文献   

17.
The coupling between cavity ring-down spectroscopy (CRDS) and an environmental chamber in the investigation of photo-induced reaction mechanisms is demonstrated for the first time. The development of the CRDS device and the corresponding analytical performances are presented. The first application is devoted to the investigation of the branching ratio of the ?OH radical reaction of CH3C(O)OH and CH3C(O)OD under tropospheric conditions. An environmental chamber coupled to two complementary detection systems is used:
  • gas chromatography with FTIR spectroscopy for quantitative detection of acetic acid;
  • CRDS for quantitative detection of CO2.
  • Investigation of the reaction kinetics of ?OH+CH3C(O)OH gives a rate constant of (6.5±0.5)×10-13 cm3?molecule-1?s-1 (296 K) and shows good agreement with literature data. The product study indicates that the H-abstraction channel from the acid group is the dominant pathway with a branching ratio of (78±13)%, whereas the corresponding D-abstraction channel in the ?OH+CH3C(O)OD reaction represents only (36±7)%. This result could be attributed to a strong kinetic isotope effect. Glyoxylic acid has also been detected for the first time as by-product. These results illustrate the high interest of the CRDS technique in the investigation of atmospheric relevant problems.  相似文献   

    18.
    We present a new detection scheme for carbon dioxide (CO2) based on a custom-made room temperature distributed feedback (DFB) diode laser at 2.7 μm, currently representing one of the lasers with the highest emission wavelength of its kind. The detector's especially compact and simple set-up is based on photoacoustic spectroscopy (PAS). This method makes use of the transformation of absorbed modulated radiation into a sound wave. The sensor enables a very high detection sensitivity for CO2 in the ppb range. Furthermore, the carefully selected spectral region as well as the narrow bandwidth and wide tunability of the single-mode laser ensure an excellent selectivity. Even measurements of different CO2 isotopes can be easily performed. This enables applications in industrial sensing and medical diagnostics (e.g. 13C-breath tests).  相似文献   

    19.
    The application of pulsed cavity ring-down spectroscopy (CRDS) was demonstrated for the measurement of nitrogen dioxide (NO2) in automotive exhaust gas. The transition of the ν 3 vibrational band assigned to the antisymmetric stretching mode of NO2 was probed with a thermoelectrically cooled, pulsed, mid-infrared, distributed feedback, quantum cascade laser (QCL) at 6.13 μm. The measurement of NO2 in the exhaust gas from two diesel vehicles equipped with different aftertreatment devices was demonstrated using a CRDS-based NO2 sensor, which employs a HEPA filter and a membrane gas dryer to remove interference from water as well as particulates in the exhaust gas. Stable and sensitive measurement of NO2 in the exhaust gas was achieved for more than 30 minutes with a time resolution of 1 s.  相似文献   

    20.
    We report preliminary results on the first application of optical feedback cavity-enhanced absorption spectroscopy with a blue (411 nm) extended cavity diode laser (ECDL) for NO2 detection. While this technique was originally developed to operate with distributed feedback diode lasers in the near infrared, it is here extended to ECDLs and applied to the blue spectral region. With a simple and compact optical setup, we demonstrate from the baseline noise a minimum detectable NO2 concentration of 6×109 molecules/cm3 for a single laser scan (70 ms), which extrapolated under atmospheric conditions corresponds to 200 pptv. Signal averaging should allow further lowering of this limit. Observed absorption spectra display more structure than previous spectra obtained at lower resolution by Fourier-transform spectroscopy at the same wavelength. PACS 07.88.+y; 42.55.Px; 42.62.Fi  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号