首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Micrometer-sized, monodisperse, hollow polystyrene (PS)/poly(ethylene glycol dimethacrylate) (PEGDM) composite particles with a single hole in the shell were prepared by seeded polymerization using (ethylene glycol dimethacrylate/xylene)-swollen PS particles in the presence of sodium dodecyl sulfate (SDS). Single holes were observed at SDS concentrations above 3 mM, much lower than in the PS/polydivinylbenzene (PDVB) system previously reported (above 45 mM). Phase separation inside droplets occurred at lower conversion in the PEGDM system than the PDVB system. Phase separation in the droplet at the early stage of the polymerization is an important factor for the formation of the single hole in the shell. Part CCCXIII of the series “Studies on Suspension and Emulsion.”  相似文献   

2.
The relation between particle size and the optical and electrochemical behavior of nanocrystalline ZnO was studied on materials prepared by the thermal decomposition of zinc peroxide. The formation of zinc oxide starts at 180°C and yields particles of characteristic size bigger than 10 nm. Smaller particles (r∼2–5 nm) may be prepared at reduced pressure and at a temperature of 150°C. The particle radius of synthesized nanocrystals increases proportionally to synthesis temperature. Regardless of actual particle size, synthesized ZnO samples show cationic disorder, with Zn distributed between 2b and 2a sites. The fraction of “octahedrally” coordinated Zn in 2a position decreases with increasing synthesis temperature. Zn disorder causes a narrowing of band gap, which results in the “red shift” of the absorption edge in the UV–Vis spectra of prepared samples with respect to bulk ZnO. The effect of the disorder on the band gap width is partially compensated by quantum size effects when the characteristic particle size drops below 5 nm. A decrease in particle size results in an asymmetric shift of valence and conduction band edges, which can be assigned to uneven effective masses of electrons and holes in nanocrystalline ZnO. Prepared nanocrystalline samples were (photo)electrochemically active; their activity, however, decreases with particle size.
Petr KrtilEmail:
  相似文献   

3.
Joint results of the differential scanning calorimetry (DSC) and thermogravimetry (TG) experiments were the basis for the fusion enthalpy and temperature determination of the biuret (NH2CO)2NH (synthesis by-product of the urea fertilizer (NH2)2CO). Recommended values are Δm H = (26.1 ± 0.5) kJ mol−1, T m = (473.8 ± 0.4) K. The DSC method allowed for the phase diagrams of “water–biuret,” “water–urea,” “urea–biuret” binary systems to be studied; as a result, liquidus and solidus curves were precisely defined. Stoichiometry and decomposition temperature of the biuret hydrate identified, composition of the compound in “urea–biuret” system was suggested.  相似文献   

4.
In 1931 eminent chemist Fritz Paneth maintained that the modern notion of “element” is closely related to (and as “metaphysical” as) the concept of element used by the ancients (e.g., Aristotle). On that basis, the element chlorine (properly so-called) is not the elementary substance dichlorine, but rather chlorine as it is in carbon tetrachloride. The fact that pure chemicals are called “substances” in English (and closely related words are so used in other European languages) derives from philosophical compromises made by grammarians in the late Roman Empire (particularly Priscian [fl. ~520 CE]). When the main features of the constitution of isotopes became clear in the first half of the twentieth century, the formal (IUPAC) definition of a “chemical element” was changed. The features that are “essential” to being an element had previously been “transcendental” (“beyond the sphere of consciousness”) but, by the mid-twentieth century the defining characteristics of elements, as such, had come to be understood in detail. This amounts to a shift in a “horizon of invisibility” brought about by progress in chemistry and related sciences. Similarly, chemical insight is relevant to currently-open philosophical problems, such as the status of “the bundle theory” of the coherence of properties in concrete individuals.
Joseph E. Earley Sr.Email: URL: http://www.georgetown.edu/faculty/earleyj/main.htm
  相似文献   

5.
郑世军 《高分子科学》2012,30(2):209-216
Liquid crystalline(LC) polymers with a shish-kebab-type moiety on their cross-conjugated(p-phenylene)s-poly(p-phenylenevinylene) s main chains were synthesized through Gilch polymerization in order to develop a kind of polymers available for linearly polarized white-light-emitting from single chain.In this system,the 2,5-bis(4’-alkoxyphenyl)benzene as the "kebabs" connects with poly(p-phenylenevinylene)(PPV) main chain backbone using its molecular gravity center and the PPV as the "shish" or "skewer"(the "shish-kebab").The polymers possess desirable properties such as excellent solubility and liquid crystalline properties.To drop the "kebabs" of the 2,5-bis(4’-alkoxyphenyl)benzene into the orientation microgroove of aligned polyimide film,not only the "shish" of polymer main chain can be aligned by the virtue of orientation of "kebabs" but also the uniform cross-conjugated structure between the "kebabs" and "shish" can be broken. Then,the alignment of the polymer main chain showed yellow light emission and was also accompanied by orientation of the LC side chains showing blue light emission,this gave rise to a notable linearly polarized white fluorescence.  相似文献   

6.
Micrometer-sized flowerlike FeS/poly(vinyl pyrrolidone)(PVP) architectures were synthesized by solvothermal process with the aid of thiourea, in which PVP may serve as soft templates. The FeS/PVP flowers have uniform morphologies with an average diameter of 5 μm, made of several nanopetals. The formation of FeS/PVP flowers is a new kinetic control process. In this process, thiourea molecules would be decomposed to produce “gas bubble”, and the “gas bubble” could make PVP chain segment rearrange along exterior force, resulting in the morphology evolution. The higher “gas bubble” pressure would produce 3D flowers, and the lower pressure would give a hollow structure. The evolution process from particles to 3D flowers is observed for the first time. In addition, the hollow FeS/PVP and Cu2S/PVP spheres are also obtained by this technique.  相似文献   

7.
Hexadecane-in-water emulsion droplets were formed in a homogeniser in the presence of a mixture of an anionic surfactant (sodium dodecyl sulfate, SDS) and nonionic surfactants of various chain lengths [nonylphenol ethoxylate (C9φEN, N=100, 40 and 30) or an alcohol ethoxylate (Brij35)]. The dynamic mobility of the oil droplets was then measured using a flow-through version of an AcoustoSizer. Large changes were observed in the dynamic mobility of the particles formed with the mixed surfactants compared to particles formed with SDS alone. O'Brien's “gel layer” model was employed to interpret the data. The characteristics of the adsorbed layer appeared to be similar whether the nonionic surfactant was adsorbed concurrently with the SDS as the emulsion formed or was merely added afterwards to the emulsion established. The particle size, the charge and the molar fraction of SDS had virtually no effect. The layers formed with the nonionic surfactants decreased in thickness with decreasing molecular weight as expected. Passage through the homogeniser itself had no effect on the properties of the largest nonionic surfactant and, hence, on the adsorption layer formed with it. Received: 4 October 2000 Accepted: 16 October 2000  相似文献   

8.
Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis, infects approximately one third of the current world population. Isoniazid is one of the most frequently used first-line anti-TB drugs. In this study, we developed a sensitive cation-selective exhaustive injection–sweeping–micellar electrokinetic chromatography method (CSEI-Sweep-MEKC) for analyzing isoniazid in human plasma. Parameters including acetonitrile (ACN) percentage in the separation buffer; the injection time, and concentration of the high-conductivity buffer; sodium dodecyl sulfate (SDS) concentration; phosphate concentration in the sample matrix; and the sample injection time were all optimized to obtain the best analytical performance. The optimal background electrolyte comprised 50 mM phosphate buffer, 100 mM SDS, and 15% ACN. Non-micelle background electrolyte, containing 75 mM phosphate buffer and 15% ACN, was first injected into the capillary, followed by a short plug of 200 mM phosphate (high-conductivity buffer). Run-to-run repeatability (n = 3) and intermediate precision (n = 3) of peak area ratios were found to be lower than 8.7% and 11.4% RSD, respectively. The accuracy of the method was within 98.1–106.9%. The limit of detection of isoniazod in human plasma was 9 ng mL−1. Compared with conventional MEKC, the enhancement factor of the CSEI-Sweep-MEKC method was 85 in plasma samples. The developed method was successfully used to determine isoniazid concentration in patient plasma. The results demonstrated that CSEI-Sweep-MEKC has the potential to analyze isoniazid in human plasma for therapeutic drug monitoring and clinical research.  相似文献   

9.
In this study, different flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenases (FADGDHs) were characterized electrochemically after “wiring” them with an osmium redox polymer [Os(4,4′-dimethyl-2,2′-bipyridine)2(PVI)10Cl]+ on graphite electrodes. One tested FADGDH was that recently discovered in Glomerella cingulata (GcGDH), another was the recombinant form expressed in Pichia pastoris (rGcGDH), and the third was a commercially available glycosylated enzyme from Aspergillus sp. (AspGDH). The performance of the Os-polymer “wired” GDHs on graphite electrodes was tested with glucose as the substrate. Optimal operational conditions and analytical characteristics like sensitivity, linear ranges and current density of the different FADGDHs were determined. The performance of all three types of FADGDHs was studied at physiological conditions (pH 7.4). The current densities measured at a 20 mM glucose concentration were 494 ± 17, 370 ± 24, and 389 ± 19 μA cm−2 for GcGDH, rGcGDH, and AspGDH, respectively. The sensitivities towards glucose were 2.16, 1.90, and 1.42 μA mM−1 for GcGDH, rGcGDH, and AspGDH, respectively. Additionally, deglycosylated rGcGDH (dgrGcGDH) was investigated to see whether the reduced glycosylation would have an effect, e.g., a higher current density, which was indeed found. GcGDH/Os-polymer modified electrodes were also used and investigated for their selectivity for a number of different sugars.  相似文献   

10.
In this work, a simple, reproducible and sensitive micellar electrokinetic chromatography (MEKC) method was developed for the separation and determination of five triterpenoids, lupeol (1), 1β-hydroxy-lupeol (2), lup-3β,1α-diol (3), lup-1β,3β,11α-triol (4) and 30-norlupan-3β,11α-diol-20-one (5) in traditional Chinese medicine of Salvia roborowskii Maxim. Field-enhanced sample injection with reverse migrating micelles (FESI-RMM) was used for on-line concentration of triterpenoids. The optimum buffer contained 50 mM H3PO4, 160 mM SDS, 20% acetonitrile and 15% 2-propanol and pH of buffer was 2.0. The sample solution was diluted with 10 mM H3PO4 (pH 2.5, containing 10 mM SDS) and injected for 15 s with −8 kV after injection of 4 s water plug. The effects of concentrations of sodium dodecyl sulfate (SDS) and organic modifier, the sample matrix, the injection time of water plug, the injection voltage and injection time of sample on the separation and stacking efficiency were investigated. Under the optimum conditions, the analytes were well separated and by optimizing the stacking conditions, about 28–96-fold improvement in the detection sensitivity was obtained for triterpenoids. The contents of five triterpenoids in Salvia roborowskii Maxim were successfully determined with satisfactory repeatability and recovery.  相似文献   

11.
 The electrophoretic mobility of a poly(N-isopropylacrylamide) microgel containing carboxylic groups has been measured as a function of the ionic strength, between 0.1 and 100 mM NaCl, over the temperature range 2545 C. The mobility data obtained have been evaluated using different models, including the porous-sphere, the soft-plate and the soft-sphere models as well as the hard-sphere model developed by Henry and later refined by O'Brien and White. The “porous” or “soft” behaviour is evident at lower temperatures, whereas at higher temperatures none of the models can fully explain the observed behaviour. It is suggested that the discrepancies at higher temperatures can be partly ascribed to the neglect of the relaxation effect in the “soft” models. Received: 30 June 1999/Accepted in revised form: 12 October 1999  相似文献   

12.
When pine wood decayed by white- and brown-rot fungi was observed in TEM after fixation and staining with glutaraldehyde/osmium tetroxide/ uranylacetate and embedding in Spurr’s ultralow viscosity resin electron dense particles, called “osmiophilic particles,” a typical distribution for the two decay types could be observed: in white-rotted wood the particles could be found in and around the hyphae and on the lumen surface of the wood cell wall, mostly aggregated to thick clusters. During the whole course of decay the wood cell walls were free of the particles, but they were present on the corroded surfaces. In brown-rotted wood the “osmiophilic particles” also could be found in and around the hyphae, but in contrast the particles were distributed over all the wood cell wall layers from the early to late stages of decay. The distribution of the “osmiophilic particles” coincides with the place where the major cell wall degradation takes place: in white-rot the cell walls are degraded from the lumen to the middle lamella; in brown-rot a depolymerization and degradation of the carbohydrates takes place all over the wood cell wall. Since the “osmiophilic particles” can be found where the degradation takes place, it can be concluded that they are causally connected with wood decay. The fact that they also were found in, and some of them also around, hyphae grown on malt-agar or Sabouraud-dextrose-agar proves that they are produced by the fungi and cannot be degradation products. The possibility that they could be preparative artifacts can be excluded because uncolonized wood was free of “osmiophilic particles.” Since the “osmiophilic particles” are produced by the fungi and can be found in places where wood is decaying, it can be further concluded that they are a fungal agent that is involved in wood degradation, probably fungal enzymes. The observation that the large “osmiophilic particles,” which may have a size of up to 20 nm, are composed of globular subunits of a diameter of 2—3 nm also speaks for their enzymatic nature. To find out which type of enzyme they might be, the white-rot fungusTrametes hirsuta was grown on wood pulp with 7% lignin, on delignified wood pulp containing cellulose and hemicellulose, and on filterpaper (pure cellulose). The hyphae on wood pulp containing 7% lignin were surrounded by thick sheaths of “osmiophilic particles,” whereas with the hyphae grown on delignified wood pulp and pure cellulose only a few particles could be found. This makes it clear that the production of the “osmiophilic particles” is induced by lignin.  相似文献   

13.
Catalytic properties of the phenoxyimine zirconium complexes, viz., bis[N-(3,5-di-tert-butylsalicylidene)anilinato]zirconium(IV) dichloride (1) and its fluorinated analog, bis[N-(3,5-di-tert-butylsalicylidene)-2,3,5,6-tetrafluoroanilinato]zirconium(IV) dichloride (2), were studied. Ethylene homopolymerization and copolymerization of ethylene with α-olefins were chosen as catalytic reactions, and various organoaluminum compounds served as activators: commercial polymethylalumoxane (MAO) containing ∼35 mol.% of trimethylaluminum (TMA), MAO purified from TMA (“dry” MAO), and “classical” organoaluminum compounds, namely, TMA and triisobutylaluminum (TIBA). Complex 1 is not activated by “dry” MAO but is efficiently transformed into the catalytically active state by commercial MAO, “conventional” TMA, and TIBA. These processes give low-molecular-weight polyethylenes (PE) characterized by high values of polydispersity indices and by polymodal curves of gel permeation chromatography (GPC). The order of decreasing the efficiency of activation for the cocatalysts is MAO > TIBA > TMA. Fluorinated complex 2 exhibits a high activity after its treatment with MAO and “dry” MAO, the activity is much lower upon mixing with TIBA, and complex 2 is inactive when using TMA. In the copolymerization of ethylene with hex-1-ene and dec-1-ene, complex 1 treated with MAO is highly active but gives a low level of insertion of the comonomer (1–2 mol.% in the copolymer). Complex 2 activated with “dry” MAO is more efficient in the copolymerization of ethylene with propylene or hex-1-ene but, like complex 1, it does not produce copolymers with a high content of the comonomer. The both catalysts provide the insertion of α-olefin as isolated units separated by extended sections of the chain consisting of ethylene units.  相似文献   

14.
Mouse anti-human CD71 monoclonal antibody (anti-CD71) was conjugated with red quantum dots (QDs; 5.3 nm, emission wavelength λ em = 614 nm) and used to label HeLa cells successfully. Then green QD-labeled goat anti-mouse immunoglobulin G (IgG; the size of the green QDs was 2.2 nm; λ em = 544 nm) was added to bind the red-QD-conjugated anti-CD71 on the cell surface by immunoreactions. Such interaction between anti-CD71 and IgG lasted 4 min and was observed from the fluorescence spectra: the fluorescence intensity of the “red” peak at 614 nm increased by 32%; meanwhile that of the “green” one at 544 nm decreased by 55%. The ratio of the fluorescence intensities (I 544 nm/I 614 nm) decreased from 0.5 to 0.2. The fluorescence spectra as well as cell imaging showed that fluorescence resonance energy transfer took place between these two kinds of QDs on the HeLa cells through interactions between the primary antibody and the secondary antibody.  相似文献   

15.
Micrometer-sized, monodisperse, “hamburger-like” polystyrene (PS)/poly(2-ethylhexyl methacrylate)/decane composite particles were obtained by seeded dispersion polymerization of 2-ethylhexyl methacrylate with PS seed particles in the presence of decane. The morphological stability of the hamburger-like particles was investigated based on thermodynamic and kinetic aspects. The hamburger-like morphology was maintained at 60 °C (above glass transition temperature (T g)) for at least 1 week in spite of less thermodynamic stability than hemispherical morphology. T g of the particles gradually increased throughout the polymerization due to monomer consumption. Geometric calculation result indicates that the degree of reduction of the interfacial free energy at the early stage of the morphological development is significantly low. From these results, it is concluded the morphological stability of the hamburger-like particles is considerably high because the development from hamburger-like to hemispherical morphologies is retarded by the gradual increase in viscosity inside the particles and the significantly lower interfacial free energy reduction.  相似文献   

16.
We establish a triple-stacking capillary electrophoresis (CE) separation method to monitor methotrexate (MTX) and its eight metabolites in cerebrospinal fluid (CSF). Three stacking methods with different mechanisms were combined and incorporated into CE separation. Complete stacking and sharp peaks were achieved. Firstly, the optimized buffer (60 mM phosphate containing 15% THF and 100 mM SDS) was filled into the capillary, which was followed by the higher conductivity buffer (100 mM phosphate, 2 psi for 45 s). The analytes extracted from CSF were injected at 2 psi for 99.9 s, which provided long sample zones and pH junction for focusing. Finally, the stacking step was performed by sweeping, and separation was achieved by micellar electrokinetic chromatography. The results of the linear regression equations indicated high linearity (r ≥ 0.9981) over the range of 0.5–7 μM. In intra- and inter-batch results, all data of RSD and RE were below 11%, indicating good precision and accuracy of this method. The LODs (S/N = 3) were 0.1 μM for MTX, 7-hydroxymethotrexate (7-OHMTX) and MTX-polyglutamates (MTX-(Glu) n, n = 2–5), 0.2 μM for MTX-(Glu)6, and 0.3 μM for 2,4-diamino-N 10-methylpteroic acid (DAMPA) and MTX-(Glu)7. Our method was implemented for analysis of MTX and its metabolites in the CSF, and could be used for evaluation of its curative effects of acute lymphoblastic leukemia patients. The data were also confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The results showed good coincidence.  相似文献   

17.
Passive air sampling was undertaken using polyurethane foam passive air samplers at three types of locations, including indoors (six offices) at buildings in the central business district (CBD) and at a private suburban home (indoor and outdoor) located 9 km from the CBD in Brisbane, Queensland, Australia. Estrogenic (E-SCREEN—MCF7-BOS) and aryl hydrocarbon receptor (AhR) (CAFLUX—H4G1.1c2) activity were assessed for samples collected from each of these locations. The samples were tested either as crude extracts (“untreated”) or were subjected to H2SO4 silica gel (“treated”) for each location in order to determine whether chemicals, which are not resistant to this treatment like polycyclic aromatic hydrocarbons, potentially account for the observed activity. In most cases, H2SO4 treatment resulted in a statistically significant reduction of potency for both endpoints, suggesting that chemicals less resistant to treatment may be responsible for much of the detected biological activity in these locations. Estrogenic potency measurements (<0.22–185 pg m−3) were highest in the indoor offices, followed by the indoor suburban home and finally the outdoor suburban home (which was not estrogenic). Total AhR activity for crude extracts (1.3–10 pg m−3) however was highest for the outdoor suburban home site. Levels of polycyclic aromatic hydrocarbons were monitored indoors and outdoors at the suburban home. At that location, polycyclic aromatic hydrocarbon air concentrations were on average approximately two times higher outdoor than indoor, while AhR potency was five times higher outdoor than indoor. No significant correlation was found between the estrogenic and AhR activity (P = 0.88) for the sites in this study. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Two Americium–Beryllium neutron sources were dismantled, sampled (sub-sampled) and analyzed via inductively coupled plasma mass spectrometry (ICP-MS). Characteristics such as “age” since purification, actinide content, trace metal content and inter and intra source composition were determined. The “age” since purification of the two sources was determined to be 25.0 and 25.4 years, respectively. The systematic uncertainties in the “age” determination were ±4% 2σ. The amount and isotopic composition of U and Pu varied substantially between the sub-samples of Source 2 (n = 8). This may be due to the physical means of sub-sampling or the way the source was manufactured. Source 1 was much more consistent in terms of content and isotopic composition (n = 3 sub-samples). The Be–Am ratio varied greatly between the two sources. Source 1 had an Am–Be ratio of 6.3 ± 52% (1σ). Source 2 had an Am–Be ratio of 9.81 ± 3.5% (1σ). In addition, the trace element content between the samples varied greatly. Significant differences were determined between Sources 1 and 2 for Sc, Sr, Y, Zr, Mo, Ba and W.  相似文献   

19.
 The effects of molecular weight, particle diameter and cooling condition on the formation of multi-hollow structure formed within submicron-sized styrene-methacrylic acid copolymer particles by the “alkali/cooling method” proposed by the authors were examined and the formation mechanism was proposed. The original particles were produced by emulsion copolymerization in the presence of n-octyl mercaptan as a chain transfer agent. Received: 29 March 1996 Accepted: 19 June 1996  相似文献   

20.
Trehalose, a non-reducing disaccharide, is known as an exceptional protector against desiccation and heat stress. Differential scanning calorimetry is a simple tool to determine thermodynamic parameters concerning the structural state of proteins. In this study, we measured denaturation temperature (or melting temperature) of dried lenses to know the effect of trehalose pretreatment. Isolated porcine lenses were incubated in wells without any solution or with saline, 100 mM trehalose, or 100 mM cyclic tetrasaccharide in saline at room temperature for 150 min. The solutions were removed, and all lens samples were dried at room temperature and in room humidity until the weight showed no change. The nucleus of each sample was taken out and placed on a measuring platform for differential scanning calorimetry. The denaturation temperature of the dried lenses significantly rose by about 10 °C with 100 mM trehalose pretreatment, compared to no pretreatment, pretreatment with saline or 100 mM cyclic tetrasaccharide (P < 0.05, analysis of variance, P < 0.05, Student–Newman–Keuls tests, n = 7). The denaturation temperature showed no difference among the dried lenses with no pretreatment or pretreatment by saline or cyclic tetrasaccharide. In conclusion, pretreatment with trehalose raises denaturation temperature of the dried porcine lens. Trehalose might stabilize the dried tissue structure to get a higher denaturation temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号