首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Density functional theory is carried out to study hexaphyrin and its bis-metal and mixed bis-metal (M = Cu3+, Ag3+, and Au3+) complexes. The electronic structures and bonding situations of them are studied by using natural bond orbital approach and the topological analysis of the electron localization function. Electronic spectra are investigated by using time-dependent density functional theory. The introduction of group 11 transition metals leads to red shifts in the spectra of these metal complexes with respect to that of hexaphyrin. Moreover, it is noteworthy that the spectra of copper contained complexes are mainly derived from combination of ligand-to-metal charge transfer and ligand-to-ligand charge transfer transitions. In addition, the relativistic time-dependent density functional theory with spin-orbit coupling calculations indicate that the effects of spin-orbit coupling on the excitation energies are so small that it is safe enough to neglect spin-orbit coupling for these systems.  相似文献   

2.
通过定域密度矩阵方法和含时密度泛函方法研究了六元扩展卟啉及其Zn,Cd和Hg单金属配合物的光电性质.通过计算得到扩展卟啉HP同金属Zn2+,Cd2+和Hg2+发生配位时,分子趋于平面化.配合物在Q带有弱得吸收峰,它们随着中心金属的原子序数的增加产生了红移.在B带有强吸收峰,其特征峰主要来自于中心金属离子的d轨道和同金属配位的C原子所处的吡咯环以及吡咯环两侧的meso-C原子上的苯基的参与.对于扩展卟啉极其配合物,定域密度矩阵方法也可以很好的预测光谱和电子跃迁性质.  相似文献   

3.
利用密度泛函和含时密度泛函理论对卟啉(FBP)、单氮杂卟啉(N/Neo-CPs)、双氮杂卟啉(DNCPs)及双混氮杂卟啉(Neo-C-NCPs)的结构与电子吸收光谱进行了研究。结果表明,由于N/C位置改变,分子对称性和轨道组成发生改变,氮杂卟啉中2-NCP-2H,2,18-DNCP-2H和1,17-Neo-C-NCP的各前线和近前线轨道能级发生较大变化,光谱峰红移较显著;电子-空穴分布图表明3类氮杂卟啉电子跃迁途径更丰富。进一步探讨了水、氯仿和苯3种溶剂对4类卟啉分子的影响。结果表明,随着溶剂极性减小,FBP,N-/Neo-CPs,DNCPs和Neo-C-NCPs的Q带吸收峰红移越明显,吸收略有增强。  相似文献   

4.
The excitedstate intramolecular charge transfer of four oxazolo[4,5-b]pyridine derivatives with different electron donating and electron withdrawing groups was investigated using the time-dependent density functional theory. The vertical excitation energies and the electronic structures were explored. Their distinct properties of absorption and fluorescence spectra in solvent phase were explained according to the electronic coupling matrix elements calculated by the Mulliken-Hush theory. The sub-stituent on the oxazolo[4,5-b]pyridines will remarkably change their spectra properties and increase the first excited-state dipole moments. The effect of protonation on the absorption and fluorescence spectra was also investigated systematically. Our study suggests that the present method is feasible to explain charge transfer excitation and predict the properties of absorption and emission spectra in the studied systems.  相似文献   

5.
The electronic structures, absorption spectra and intramolecular charge transfer properties of five push-pull zinc porphyrin analogs with different donor group and π bridge have been investigated by density functio- nal theory(DFT) and TD(time-dependent)-DFT approach. The results show that the asymmetrical substituted diphenylamine group is favorable to the Q-band absorption of porphyrin dyes. The absence of the acetylenic bond in the π bridge part leads to the result that the B-band and the Q-band are blue-shifted and their absorption strength become weaker compared with that containing acetylenic bond, respectively. The introduction of the benzothiadiazole into the π bridge improves the intramolecular charge transfer.  相似文献   

6.
We have described copper(II)-iron(III) and copper(II)-manganese(III) heterobimetallic porphyrin dimers and compared them with the corresponding homobimetallic analogs. UV-visible spectra are very distinct in the heterometallic species while electrochemical studies demonstrate that these species, as compared to the homobimetallic analog, are much easier to oxidize. Combined Mössbauer, EPR, NMR, magnetic and UV-visible spectroscopic studies show that upon 2e-oxidation of the heterobimetallic complexes only ring-centered oxidation occurs. The energy differences between HOMO and LUMO are linearly dependent with the low-energy NIR band obtained for the 2e-oxidized complexes. Also, strong electronic communication between two porphyrin rings through the bridge facilitates coupling between various unpaired spins present while the coupling model depends on the nature of metal ions used. While unpaired spins of Fe(III) and the porphyrin π-cation radical are strongly antiferromagnetically coupled, such coupling is rather weak between Mn(III) and a porphyrin π-cation radical. Moreover, the coupling between two π-cation radicals are much stronger in the 2e-oxidized complexes of dimanganese(III) and copper(II)-manganese(III) porphyrin dimers as compared to their diiron(III) and copper(II)-iron(III) analogs. Furthermore, coupling between the unpaired spins of a π-cation radical and copper(II) is much stronger in the 2e-oxidized complex of copper(II)-iron(III) porphyrin dimer as compared to its copper(II)-manganese(III) analog. The Mulliken spin density distributions in 2e-oxidized homo- and heterobimetallic complexes show symmetric and asymmetric spread between the two macrocycles, respectively. In both the 2e-oxidized heterobimetallic complexes, the Cu(II) porphyrin center acts as a charge donor while Fe(III)/Mn(III) porphyrin center act as a charge acceptor. The experimental observations are also strongly supported by DFT calculations.  相似文献   

7.
We have theoretically investigated a series of multiply N-confused porphyrins and their Zn or Cu complexes for the first time by using DFT(B3LYP/6-31G*) and ZINDO/SOS methods. The electronic structure, one-photon absorption (OPA), and two-photon absorption (TPA) properties have been studied in detail. The calculated results indicate that the OPA spectra of multiply N-confused porphyrins are red-shifted and the OPA intensities decrease compared to normal porphyrin. The maximum two photon absorption wavelengths lambda(max) are blue-shifted and the TPA cross sections delta(max) are increased 22.7-112.1 GM when the N atoms one by one are inverted from core to beta position to form multiply N-confused porphyrins. Especially delta(max) of N3CP get to 164.7 GM. The electron donors -C6F5s at meso-position can make the TPA cross section delta(max) increase. After forming metal complexes with Cu or Zn, the TPA properties of multiply N-confused porphyrins are further increased except for N3CP, N4CP. Our theoretical findings demonstrate that the multiply N-confused prophyrins as well as their metal complexes and derivatives are promising molecules that can be assembled series of materials with large TPA cross section, and are sure to be the subject of further investigation.  相似文献   

8.
The geometries, electronic structures and the electronic absorption spectra of three kinds of ruthenium complexes, which contain tridentate bipyridine-pyrazolate ancillary ligands, were studied using density functional theory (DFT) and time-dependent DFT. The calculated results indicate that: (1) the strong conjugated effects are formed across the pyrazoalte-bipyridine groups; (2) the interfacial electron transfer between electrode and the dye sensitizers is an electron injection processes from the excited dyes to the conduction band of TiO2; (3) the absorption bands in visible region have a mixed character of metal-to-ligand charge transfer and ligand-to-ligand charge transfer, but the main character of absorption bands near UV region ascribe to π→π* transitions; (4) introducing pyrazolate and -NCS groups are favorable for intra-molecular charge transfer, and they are main chromophores that contribute to the sensitization of photon-to-current conversion processes, but introducing -Cl and the terminal group -CF3 are unfavorable to improve the dye performance in dye sensitized solar cells.  相似文献   

9.
The present work is a theoretical investigation on lithium complexes of N-confused tetraphenylporphyrins (aka inverted) employing density functional theory (DFT) and time-dependent DFT, using the B3LYP, CAM-B3LYP, and M06-2X functionals in conjunction with the 6-31G(d,p) basis set. The purpose of the present study is to calculate the electronic structure and the bonding of the complexes to explain the unusual coordination environment in which Li is found experimentally and how the Li binding affects the Q and the Soret bands. The calculations show that, unlike a typical tetrahedral Li(+) cation, this Li forms a typical bond with one N and interacts with the remaining two N atoms, and it is located in the right place to form an agostic-like interaction with the internal C atom. The reaction energy, the enthalpy for the formation of the lithium complexes of N-confused porphyrins, and the effect of solvation are also calculated. The insertion of Li into N-confused porphyrin, in the presence of tetrahydrofuran, is exothermic with a reaction energy calculated to be as high as -72.4 kcal/mol using the lithium bis(trimethylsilyl)amide reagent. Finally, there is agreement in the general shape among the vis-UV spectra determined with different functionals and the experimentally available ones. The calculated geometries are in agreement with crystallographic data, where available.  相似文献   

10.
L(2,3)-edge X-ray absorption spectroscopy (XAS) has demonstrated unique capabilities for the analysis of the electronic structure of di-Ru complexes such as the blue dimer cis,cis-[Ru(III)(2)O(H(2)O)(2)(bpy)(4)](4+) water oxidation catalyst. Spectra of the blue dimer and the monomeric [Ru(NH(3))(6)](3+) model complex show considerably different splitting of the Ru L(2,3) absorption edge, which reflects changes in the relative energies of the Ru 4d orbitals caused by hybridization with a bridging ligand and spin-orbit coupling effects. To aid the interpretation of spectroscopic data, we developed a new approach, which computes L(2,3)-edges XAS spectra as dipole transitions between molecular spinors of 4d transition metal complexes. This allows for careful inclusion of the spin-orbit coupling effects and the hybridization of the Ru 4d and ligand orbitals. The obtained theoretical Ru L(2,3)-edge spectra are in close agreement with experiment. Critically, existing single-electron methods (FEFF, FDMNES) broadly used to simulate XAS could not reproduce the experimental Ru L-edge spectra for the [Ru(NH(3))(6)](3+) model complex nor for the blue dimer, while charge transfer multiplet (CTM) calculations were not applicable due to the complexity and low symmetry of the blue dimer water oxidation catalyst. We demonstrated that L-edge spectroscopy is informative for analysis of bridging metal complexes. The developed computational approach enhances L-edge spectroscopy as a tool for analysis of the electronic structures of complexes, materials, catalysts, and reactive intermediates with 4d transition metals.  相似文献   

11.
The cis-doubly N-confused porphyrin, H2N2CP, containing two adjacent confused pyrrole rings has been investigated from the point of view of its acid-base and electrochemical behavior in dichloromethane. This novel porphyrin isomer can form two metal-carbon bonds in the central core, stabilizing metal ions in unusually high oxidation states. Furthermore, the two outside N-pyrrole atoms remain available for acid-base and specific solvent interactions. Protonation of the pyrrole N atoms proceeds according to two successive steps, while only a single deprotonation step has been observed in the presence of bases. Similarly, in the case of the silver and copper complexes the protonation and deprotonation of the outer pyrrole rings have been detected, confirming the structure of the metalated species as M(III)-HN2CP. The electrochemical reduction of the metal ions (III/II redox process) and oxidation of the macrocycle ring have been detected respectively at -0.9 and 1.4 V based on spectroelectrochemical measurements in conjunction with the acid/base equilibrium studies. Additional waves observed around -0.5 and 1.3 V have been assigned to redox processes involving water molecules associated with the doubly N-confused porphyrins.  相似文献   

12.
A long-range corrected (LC) time-dependent density functional theory (TDDFT) incorporating relativistic effects with spin-orbit couplings is presented. The relativistic effects are based on the two-component zeroth-order regular approximation Hamiltonian. Before calculating the electronic excitations, we calculated the ionization potentials (IPs) of alkaline metal, alkaline-earth metal, group 12 transition metal, and rare gas atoms as the minus orbital (spinor) energies on the basis of Koopmans' theorem. We found that both long-range exchange and spin-orbit coupling effects are required to obtain Koopmans' IPs, i.e., the orbital (spinor) energies, quantitatively in DFT calculations even for first-row transition metals and systems containing large short-range exchange effects. We then calculated the valence excitations of group 12 transition metal atoms and the Rydberg excitations of rare gas atoms using spin-orbit relativistic LC-TDDFT. We found that the long-range exchange and spin-orbit coupling effects significantly contribute to the electronic spectra of even light atoms if the atoms have low-lying excitations between orbital spinors of quite different electron distributions.  相似文献   

13.
Toganoh M  Ikeda S  Furuta H 《Inorganic chemistry》2007,46(23):10003-10015
The thermal reactions of N-fused tetraarylporphyrins or N-confused tetraarylporphyrins with Re2(CO)10 gave the rhenium(I) tricarbonyl complexes bearing N-fused porphyrinato ligands (4) in moderate to good yields. The rhenium complexes 4 are characterized by mass, IR, 1H, and 13C NMR spectroscopy, and the structures of tetraphenylporphynato complex 4a and its nitro derivative 15 are determined by X-ray single crystal analysis. The rhenium complexes 4 show excellent stability against heat, light, acids, bases, and oxidants. The aromatic substitution reactions of 4 proceed without a loss of the center metal to give the nitro (15), formyl (16), benzoyl (17), and cyano derivatives (19), regioselectively. In the electrochemical measurements for 4, one reversible oxidation wave and two reversible reduction waves are observed. Their redox potentials imply narrow HOMO-LUMO band gaps of 4 and are consistent with their electronic absorption spectra, in which the absorption edges exceed 1000 nm. Theoretical study reveals that the HOMO and LUMO of the rhenium complexes are exclusively composed of the N-fused porphyrin skeleton. Protonation of 4 takes place at the 21-position regioselectively, reflecting the high coefficient of the C21 atom in the HOMO orbital. The skeletal rearrangement reaction from N-confused porphyrin Re(I) complex (8) to N-fused porphyrin Re(I) complex (4) is suggested from the mechanistic study as well as DFT calculations.  相似文献   

14.
In this investigation, we have designed a series of benzene and borazines containing chromophores for employing in dye-sensitized solar cells (DSSCs). The optimized structures and photo-physical properties of these molecules have been explored by using the density functional theory method (B3LYP/6-311++G(d,p)). These dyes consist of electron-donor (benzene, borazine, fluorinated borazine) and -acceptor/anchoring (tricyanovinyl), connected by the π-conjugated linker as an electron spacer. The Natural Bond Orbital (NBO) analysis has also been employed for studying the origin of charge transfer. The time-dependent density functional theory (TD-DFT) method has also been used to calculate the electronic absorption spectra of these molecules. The maximum absorption wavelengths assign to HOMO → LUMO transition. The electronic coupling constant, electron injection and light harvesting efficiency have been computed by first principle researches. This revealed that the studied molecules would be efficient photosensitizers.  相似文献   

15.
本文主要是通过分析吸收光谱性质来区分用于体异质结聚合物太阳能电池的两种不同桥联低带隙给受体共聚物PCPDTBT和PSBTBTS的激发态特征,进而通过分析电荷转移态(CT)特征来区分二者实现电荷分离的难易程度. 利用密度泛函理论(DFT/TD-DFT)B3LYP和CAM-B3LYP方法计算PSBTBT和PCPDTBT(n=1~4)的电子结构和光谱性质. 结果表明,从吸收光谱来看,PSBTBT与PCPDTBT的光谱相似,与太阳光谱的匹配能力相当. 而激子解离能表明二者的电荷转移态(CT)电荷分离的难易程度也相当. 然而用Si原子取代C原子后,C-Si键长明显长于C-C键长,降低了噻吩环和烷基链间的空间位阻,从而可能有利于其结晶度的提高,更加有利于载流子的传输,因此从理论上说明PSBTBT也可能具备高效太阳能电池给体材料的潜质.  相似文献   

16.
Two-coordinate Carbene−Metal−Amide (CMA) complexes with thermally activated delayed fluorescence (TADF) have attracted much attention owing to their excellent luminescence properties and potential applications in organic light-emitting devices. However, the luminescence mechanism remains unclear. Herein, we took one CMA Au(I) complex as an example and investigate its relevant photophysics using both density functional theory (DFT) and time-dependent DFT methods with a polarizable continuum model. The calculated absorption and emission spectra agree with the experimental data and the S1 and T1 states show mixed ligand to ligand charge transfer (CT) and ligand to metal CT characters. Small spatial overlap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) minimizes the energy difference between the S1 and T1 states (ΔEST). Properly large spin-orbit coupling promotes the reverse intersystem crossing (rISC) process. At 300 K, the rISC process is much more efficient than the T1 phosphorescent emission, which leads to the TADF emission.  相似文献   

17.
阚玉和  李强 《化学学报》2008,66(23):2585-2591
应用密度泛函理论(DFT)方法对两种C60-多吡啶Ru(II)衍生物进行理论研究. 在TZP全电子基组优化构型基础上, 通过分析前线轨道组成, 探讨金属及配体对C60母体影响; 以LB及SAOP校正局域密度近似, 用含时密度泛函(TDDFT)方法, 考虑溶剂化效应, 计算化合物1和2的电子吸收光谱. 结果表明, 化合物1和2在气相与丙酮溶液中所对应的光谱值差异较为明显, 溶剂化效应使吸收光谱蓝移. 计算得到化合物1和2在丙酮溶液中电子光谱与实验值吻合较好, 低能跃迁多为金属参与的混合跃迁, 高能跃迁主要由C60与配体部分贡献.  相似文献   

18.
几种(C^N)PtIIQ型配合物的电子结构和紫外-可见吸收光谱   总被引:1,自引:0,他引:1  
陈新  李瑛  蒋青 《物理化学学报》2008,24(10):1797-1802
在B3LYP/LANL2DZ水平上优化了三种(C^N)PtIIQ 型配合物基态的几何结构, 进行了频率计算, 并采用含时密度泛函(TD-DFT)方法结合极化连续体模型(PCM)计算了目标配合物在CH2Cl2溶液中的电子结构和紫外-可见吸收光谱. 计算值与文献报道值相似. 计算结果表明这三种(C^N)PtIIQ型配合物在可见光区都有强度较大而且宽的吸收峰, 它们的最低能量吸收峰的跃迁具有ILCT(配体内部电荷转移)和部分MLCT(金属向配体的电荷转移)的特征, 不同于PtIIQ2型配合物在多数情况下表现出的ILCT的跃迁性质.  相似文献   

19.
Four different porphyrin–imide dyads bearing different central metals (zinc or rhodium) and different substituents on the porphyrin macrocycles (tert‐butyl or methoxy) were synthesized for single molecular diode measurements. The molecules were designed to separate the donor component (porphyrin) from the acceptor component (imide) by bonding in a perpendicular arrangement, thus enhancing the rectification properties. UV/Vis absorption spectra and density functional theory calculations showed that the design was successful and that the molecular orbitals of the dyads were the summation of the two components, with minimal interaction between them. The effect of the central metal was found to be significant, with the lowest energy absorption for the zinc dyads being attributed to the mixed state of charge transfer from porphyrin to imide and the Q band, whereas that of the rhodium dyads indicated insignificant charge‐transfer character.  相似文献   

20.
We report scalar relativistic and Dirac scattered wave (DSW) calculations on the heptacyanorhenate [Re(CN)7](3-) and Re(CN)7(4-) complexes. Both the ground and lowest excited states of each complex split by spin-orbit interaction by about 0.3 eV. The calculated molecular electronegativities chi indicate that the open-shell complex is less reactive than the closed-shell complex, in agreement with experimental observations. The calculations indicate that the ground state spin density is highly anisotropic and that spin-orbit effects are responsible for the magnetic anisotropy of the molecular g tensor of the Re(CN)7(3-) complex. The calculated optical electronic transitions for both complexes with a polarizable continuum model using a time-dependent density functional (TDDFT)/B3LYP formalism are in reasonable agreement with those observed in the absorption spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号