首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electronic structure of a series of low-lying excited triplet and quintet states of scandium boride (ScB) was examined using multireference configuration interaction (including Davidson's correction for quadruple excitations) and single-reference coupled cluster (CC) methods with averaged natural orbital (ANO) basis sets. The CC approach was used only for the lowest quintet state. The authors have analyzed eight low-lying triplets 3Sigma-(2), 3Sigma+, 3Pi(3), and 3Delta(2) dissociating to Sc(2D)/B(2P) atoms and eight low-lying quintet states 5Sigma-, 5Sigma+, 5Pi(2), 5Phi, and 5Delta(3) dissociating to Sc(4F)/B(2P) atoms. They report the potential energy curves and spectroscopic parameters of ScB obtained with the multireference configuration interaction (MRCI) technique including all singly and doubly excited configurations obtained with the ANO-S basis set. For the two lowest states they obtained also improved ANO-L spectroscopic constants, dipole and quadrupole moments as well as scalar relativistic effects based on the Douglas-Kroll-Hess Hamiltonian. They provide the analysis of the bonding based on Mulliken populations and occupation numbers. Since the two lowest states, 3Sigma- and 5Sigma-, lie energetically very close, their principal goal was to resolve the nature of the ground state of ScB. Their nonrelativistic MRCI(Q) (including Davidson correction) results indicate that the quintet is more stable than the triplet by about 800 cm(-1). Inclusion of scalar relativistic effects reduces this difference to about 240 cm(-1). The dissociation energies for 5Sigma- ScB range from 3.20 to 3.30 eV while those for the 3Sigma- range from 1.70 to 1.80 eV.  相似文献   

2.
High-level ab initio potential-energy curves and transition dipole moments for the OH X 2Pi, 2 2Pi, 1 2Sigma-, D 2Sigma-, 3 2Sigma-, A 2Sigma+, B 2Sigma+, 1 2Delta, 1 4Sigma-, and 1 4Pi states are computed. The results are used to estimate the (2+1) resonance enhanced multiphoton ionization spectrum for the (D,3)2Sigma-(upsilon')<--2hnuX 2Piupsilon") transitions, which are compared with experiments by Greenslade et al. [see M. E. Greenslade, M. I. Lester, D. C. Radenovic, J. A. van Roij, and D. H. Parker, J. Chem. Phys. 123, 074309 (2005), preceeding paper]. We use the discrete variable representation-absorbing boundary condition method to incorporate the effect of the dissociative intermediate 1 2Sigma- state. We obtain qualitative agreement with experiment for the line strengths. Radiative and predissociative decay rates of the Rydberg (D,3)2Sigma- states of OH and OD were computed, including spin-orbit coupling effects and the effect of spin-electronic and gyroscopic coupling. We show that the lifetime of the Rydberg 2Sigma- states for rotationally cold molecules is limited mainly by predissociation caused by spin-orbit coupling.  相似文献   

3.
A state-selected beam of hydroxyl radicals is generated using a pulsed discharge source and hexapole field. The OH radicals are characterized by resonance-enhanced multiphoton ionization (REMPI) spectroscopy via the nested D 2Sigma- and 3 2Sigma- Rydberg states. Simplified spectra are observed from the selected |MJ|=3/2 component of the upper Lambda-doublet level of the lowest rotational state (J=32) in ground (v"=0) and excited (v"=1-3) vibrational levels of the OH X 2Pi3/2 state. Two-photon transitions are observed to the D 2Sigma-(v'=0-3) and 3 2Sigma-(v'=0,1) vibronic levels, extending previous studies to higher vibrational levels of the Rydberg states. Spectroscopic constants are derived for the Rydberg states and compared with prior experimental studies. Complementary first-principle theoretical studies of the properties of the D 2Sigma- and 3 2Sigma- Rydberg states [see M. P. J. van der Loo and G. C. Groenenboom, J. Chem. Phys. 123, 074310 (2005), following paper] are used to interpret the experimental findings and examine the utility of the (2+1) REMPI scheme for sensitive detection of OH radicals.  相似文献   

4.
The RuC molecule has been a challenging species due to the open-shell nature of Ru resulting in a large number of low-lying electronic states. We have carried out state-of-the-art calculations using the complete active space multiconfiguration self-consistent field followed by multireference configuration interaction methods that included up to 18 million configurations, in conjunction with relativistic effects. We have computed 29 low-lying electronic states of RuC with different spin multiplicities and spatial symmetries with energy separations less than 38,000 cm(-1). We find two very closely low-lying electronic states for RuC, viz., 1Sigma+ and 3Delta with the 1Sigma+ being stabilized at higher levels of theory. Our computed spectroscopic constants and dipole moments are in good agreement with experiment although we have reported more electronic states than those that have been observed experimentally. Our computations reveal a strongly bound 1Sigma+ state with a large dipole moment which is most likely the experimentally observed ground state and an energetically close 3Delta state with a smaller dipole moment. Overall our computed spectroscopic constants of the excited states with energy separations less than 18,000 cm(-1) agree quite well with those of the corresponding observed states.  相似文献   

5.
NF (nitrogen monofluoride, fluoroimidogen) is isoelectronic with O2, and, like O2, it has a triplet configuration in the ground state, with two low-lying metastable singlet excited states. The dipole moment of the a 1Delta excited state was measured in 1973 to be 0.37 +/- 0.06 D; at the time its polarity was assumed to be normal (i.e., with the negative charge on the fluorine). However, high-level electronic structure calculations, which reproduce with high accuracy the known spectroscopic constants of the ground and excited states of NF, predict a dipole moment of -0.388 D for a 1Delta NF, indicating that, despite the electronegativities, this molecule carries a positive charge on fluorine. The other singlet state is predicted to have an even larger negative dipole moment; the ground-state triplet should have a very small positive moment. Singlet NF resembles in this respect CO and BF, from the N2 isoelectronic series, both of which also have negative dipole moments.  相似文献   

6.
Potential energy curves, energy parameters, and spectroscopic values for the X (2)Sigma(+), A (2)Pi, B (2)Sigma(+), a (4)Pi, and b (4)Sigma(+), states of CaH have been calculated using the multireference configuration interaction and coupled cluster levels of theory, while employing quantitative basis sets (of augmented quintuple-zeta quality) and taking also into account core/valence correlation and one-electron relativistic effects. For the ground (X (2)Sigma(+)) and the first two following excited states (A (2)Pi, B (2)Sigma(+)) of CaH, the permanent electric dipole moments have been calculated. Our best finite field dipole moment of the A (2)Pi state of 2.425 D (upsilon = 0) is in very good agreement with the experimental literature value of 2.372(12) D. However, a discrepancy is observed in the dipole moment of the X (2)Sigma(+) state. Our most extensive calculation gives mu = 2.623 D (upsilon = 0), which is considerably smaller than the experimental value of mu = 2.94(16) D (upsilon = 0). Small van der Waals minima were found for both "repulsive" quartet states. Spectroscopic constants and energy parameters for all states are in remarkable agreement with available experimental values.  相似文献   

7.
For the first time, we have studied the potential-energy curves, spectroscopic terms, vibrational levels, and the spectroscopic constants of the ground and low-lying excited states of NiI by employing the complete active space self-consistent-field method with relativistic effective core potentials followed by multireference configuration-interaction calculations. We have identified six low-lying electronic states of NiI with doublet spin multiplicities, including three states of Delta symmetry and three states of Pi symmetry of the molecule within 15 000 cm(-1). The lowest (2)Delta state is identified as the ground state of NiI, and the lowest (2)Pi state is found at 2174.56 cm(-1) above it. These results fully support the previous conclusion of the observed spectra although our computational energy separation of the two states is obviously larger than that of the experimental values. The present calculations show that the low-lying excited states [13.9] (2)Pi and [14.6] (2)Delta are 3 (2)Pi and 3 (2)Delta electronic states of NiI, respectively. Our computed spectroscopic terms, vibrational levels, and spectroscopic constants for them are in good agreement with the experimental data available at present. In the present work we have not only suggested assignments for the observed states but also computed more electronic states that are yet to be observed experimentally.  相似文献   

8.
Ab initio electronic structure calculations of a relatively large number of Rydberg states of the CH radical were carried out employing the multireference single and double excitation configuration interaction (MRD-CI) method. A Gaussian basis set of cc-pV5Z quality augmented with 12 diffuse functions was used together with an extensive treatment of electron correlation. The main focus of this contribution is to investigate the 3d Rydberg complex assigned by Watson [Astrophys. J. 555, 472 (2001)] to three unidentified interstellar bands. The authors' calculations reproduce quite well the absolute excitation energies of the three components of the 3d complex, i.e., 2Sigma+(3dsigma), 2Pi(3dpi), and 2Delta(3ddelta), but not the energy ordering inferred from a rotational assignment of the 3d<--X 2Pi laboratory spectrum. The computation of the 4d complex is reported for the first time along with a number of other higher lying Rydberg species with an X 1Sigma+ core. The lowest Rydberg states belonging to series converging to the a 3Pi and A 1Pi excited states of CH+ are also calculated.  相似文献   

9.
An all-electron full configuration interaction (FCI) calculation of the adiabatic potential energy curves of some of the lower states of BeH molecule is presented. A moderately large ANO basis set of atomic natural orbitals (ANO) augmented with Rydberg functions has been used in order to describe the valence and Rydberg states and their interactions. The Rydberg set of ANOs has been placed on the Be at all bond distances. So, the basis set can be described as 4s3p2d1f3s2p1d(BeH)+4s4p2d(Be). The dipole moments of several states and transition dipole strengths from the ground state are also reported as a function of the R(Be-H) distance. The position and the number of states involved in several avoided crossings present in this system have been discussed. Spectroscopic parameters have been calculated from a number of the vibrational states that result from the adiabatic curves except for some states in which this would be completely nonsense, as it is the case for the very distorted curves of the 3s and 3p (2)Sigma(+) states or the double-well potential of the 4p (2)Pi state. The so-called "D complex" at 54 050 cm(-1) (185.0 nm) is resolved into the three 3d substates ((2)Sigma(+),(2)Pi,(2)Delta). A diexcited valence state is calculated as the lowest state of (2)Sigma(-) symmetry and its spectroscopic parameters are reported, as well as those of the 2 (2)Delta (4d) state The adiabatic curve of the 4 (2)Sigma(+) state shows a swallow well at large distances (around 4.1 A) as a result of an avoided crossing with the 3 (2)Sigma(+) state. The probability that some vibrational levels of this well could be populated is discussed within an approached Landau-Zerner model and is found to be high. No evidence is found of the E(4ssigma) (2)Sigma(+) state in the region of the "D complex". Instead, the spectroscopic properties obtained from the (4ssigma) 6 (2)Sigma(+) adiabatic curve of the present work seem to agree with those of the experimental F(4psigma) (2)Sigma(+) state. The FCI calculations provide benchmark results for other correlation models for the open-shell BeH system and evidence both the limitations and capabilities of the basis set.  相似文献   

10.
The low-lying XSigma+, a3Delta, A1Delta, b3Sigma+, B1Pi, c3Pi, C1Phi, D1Sigma+, E1Pi, d3Phi, and e3Pi electronic states of RhB have been investigated at the ab initio level, using the multistate multiconfigurational second-order perturbation (MS-CASPT2) theory, with extended atomic basis sets and inclusion of scalar relativistic effects. Among the eleven electronic states included in this work, only three (the X1Sigma+, D1Sigma+, and E1Pi states) have been investigated experimentally. Potential energy curves, spectroscopic constants, dipole moments, binding energies, and chemical bonding aspects are presented for all electronic states.  相似文献   

11.
Potential energy curves (PECs) for the ground and low-lying excited states of the cesium iodide (CsI) molecule have been calculated using the internally contracted multireference configuration interaction calculation with single and double excitation method with the relativistic pseudopotentials. PECs for seven Lambda-S states, X 1Sigma+, 2 1Sigma+, 3Sigma+, 1Pi, and 3Pi are first calculated and then those for 13 Omega states are obtained by diagonalizing the matrix of the electronic Hamiltonian H(el) plus the effective one-electron spin-orbit (SO) Hamiltonian H(SO). Spectroscopic constants for the calculated ground X 0+-state PEC with the Davidson correction are found to agree well with the experiment. Transition dipole moments (TDMs) between X 0 and the other Omega states are also obtained and the TDM between X 0+ and A 0+ is predicted to be the largest and that between X 0+ and B 0+ is the second largest around the equilibrium internuclear distance. The TDMs between X 0+ and the Omega=1 states are estimated to be nonzero, but they are notably small as compared with those between the 0+ states. Finally, vibrational levels of the X 0+ PEC for the two isotopic analogs, (133)CsI and (135)CsI, are numerically obtained to investigate the isotope effect on the vibrational-level shift. It has been found that the maximized available isotope shift is approximately 30 cm(-1) around nu=136.  相似文献   

12.
We have investigated the potential energy curves (PECs) of the LiN heteronuclear diatomic molecule, including its ionic species LiN+ and LiN, using explicitly correlated multi-reference configuration interaction (MRCI-F12) calculations in conjunction with the correlation consistent quintuple-𝜁 basis set. The effect of core–valence correlation, scalar relativistic effects, and the size of the basis sets has been investigated. A comprehensive set of spectroscopic constants determined based on the above-mentioned calculations are also reported for the lowest electronic states and all systems, including dissociation energies, harmonic and anharmonic vibrational frequencies, and rotational constants. Additional parameters, such as the dipole moments, equilibrium spin-orbit constants, excitation energies, and rovibrational energy levels, are also documented. We found that the three triplet states of LiN, namely, X 3, A 3Π, and 2 3, exhibit substantial potential wells in the PEC diagrams, while the quintet states are repulsive in nature. The ground state of the anion also shows a deep potential well in the vicinity of its equilibrium geometry. In contrast, the ground and excited states of the cation are very loosely bound. Charge transfer properties of each of these states are also analyzed to obtain an in-depth understanding of the interatomic interactions. We found that the core–valence correlation has a substantial effect on the calculated spectroscopic constants.  相似文献   

13.
Ab initio calculations of low-lying electronic states of CrH are presented, including potential energies, dipole and transition dipole moment (TDM) functions, and radiative lifetimes for X (6)Sigma(+), A (6)Sigma(+), 3 (6)Sigma(+), 1 (6)Pi, 2 (6)Pi, 3 (6)Pi, and (6)Delta. Calculation of dynamic correlation effects was performed using the multistate complete active space second-order perturbation method, based on state-averaged complete active space self-consistent-field reference wave functions obtained with seven active electrons in an active space of 16 molecular orbitals. A relativistic atomic natural orbital-type basis set from the MOLCAS library was used for Cr. Good agreement is found between the current calculations and experiment for the lowest two (6)Sigma(+) states, the only states for which spectroscopic data are available. Potential curves for the 3 (6)Sigma(+) and 2 (6)Pi states are complicated by avoided crossings with higher states of the same symmetry, thus resulting in double-well structures for these two states. The measured bandhead T(0)=27 181 cm(-1), previously assigned to a (6)Pi<--X (6)Sigma(+) transition, is close to our value of T(0)=28 434 cm(-1) for the 2 (6)Pi state. We tentatively assign the ultraviolet band found experimentally at 30 386 cm(-1) to the 3 (6)Pi<--X (6)Sigma(+) transition for which the computed value is 29 660 cm(-1). The A (6)Sigma(+)<--X (6)Sigma(+) TDM and A (6)Sigma(+) lifetimes are found to be in reasonable agreement with previous calculations.  相似文献   

14.
The electronic structure and bonding of the ground and some low-lying states of all first row transition metal borides (MB), ScB, TiB, VB, CrB, MnB, FeB, CoB, NiB, and CuB have been studied by multireference configuration interaction (MRCI) methods employing a correlation consistent basis set of quintuple cardinality (5Z). It should be stressed that for all the above nine molecules, experimental results are essentially absent, whereas with the exception of ScB and CuB the remaining seven species are studied theoretically for the first time. We have constructed full potential energy curves at the MRCI/5Z level for a total of 27 low-lying states, subsequently used to extract binding energies, spectroscopic parameters, and bonding schemes. In addition, some 20 or more states for every MB species have been examined at the MRCI/4Z level of theory. The ground state symmetries and corresponding binding energies (in kcal/mol) are 5Sigma-(ScB), 76; 6Delta(TiB), 65; 7Sigma+(VB), 55; 6Sigma+(CrB), 31; 5Pi(MnB), 20; 4Sigma-(FeB), 54; 3Delta(CoB), 66; 2Sigma+(NiB), 79; and 1Sigma+(CuB), 49.  相似文献   

15.
The electronic structure of the ground and low-lying states of the diatomic fluorides TiF, VF, CrF, and MnF was examined by multireference and coupled cluster methods in conjunction with extended basis sets. For a total of 34 states we report binding energies, spectroscopic constants, dipole moments, separation energies, and charge distributions. In addition, for all states we have constructed full potential curves. The suggested ground state binding energies of TiF(X (4)Phi), VF(X (5)Pi), CrF(X (6)Sigma(+)), and MnF(X (7)Sigma(+)) are 135, 130, 110, and 108 kcal/mol, respectively, with first excited states A (4)Sigma(-), A (5)Delta, A (6)Pi, and a (5)Sigma(+) about 2, 3, 23, and 19 kcal/mol higher. In essence all our numerical findings are in harmony with experimental results. For all molecules and states studied it is clear that the in situ metal atom (M) shows highly ionic character, therefore the binding is described realistically by M(+)F(-).  相似文献   

16.
The effect of different basis sets for calculation of the spectroscopic constants of the ground state of sulfur monochloride (SCl) was analyzed using scalar relativistic multireference configuration interaction with single and double excitations plus Davidson correction. Then the generally contracted all-electronic correlation-consistent polarized valence quintuple zeta basis sets were selected to compute the electronic states of SCl including 12 valence and 9 Rydberg lambda-S states. The spin-orbit coupling effect was calculated via the state interaction approach with the full Breit-Pauli Hamiltonian. This effect splits these lambda-S states into 42 omega states. Potential-energy curves of all these states are plotted with the help of the avoided crossing rule between the electronic states of the same symmetry. The structural properties of these states are analyzed. Spectroscopic constants of bound excited states that have never been observed in experiment are obtained. The transition dipole moments and the Franck-Condon factors of several transitions from low-lying bound excited states to the ground state were also calculated.  相似文献   

17.
The potential energy curves and spectroscopic constants of the ground and 29 low-lying excited states of MoC with different spin and spatial symmetries within 48 000 cm(-1) have been investigated. We have used the complete active space multiconfiguration self-consistent field methodology, followed by multireference configuration interaction (MRCI) methods. Relativistic effects were considered with the aid of relativistic effective core potentials in conjunction with these methods. The results are in agreement with previous studies that determined the ground state as X (3)Sigma(-). At the MRCISD+Q level, the transition energies to the 1 (3)Delta and 4 (1)Delta states are 3430 and 8048 cm(-1), respectively, in fair agreement with the results obtained by DaBell et al. [J. Chem. Phy. 114, 2938 (2001)], namely, 4003 and 7834 cm(-1), respectively. The three band systems located at 18 611, 20 700, and 22 520 cm(-1) observed by Brugh et al. [J. Chem. Phy. 109, 7851 (1998)] were attributed to the excited 11 (3)Sigma(-), 14 (3)Pi, and 15 (1)Pi states respectively. At the MRCISD level, these states are 17 560, 20 836, and 20 952 cm(-1) above the ground state respectively. We have also identified a (3)Pi state lying 14 309 cm(-1) above the ground state. The ground states of the molecular ions are predicted to be (4)Sigma(-) and (2)Delta for MoC(-) and MoC(+), respectively.  相似文献   

18.
The all-electron full configuration interaction (FCI) vertical excitation energies for some low lying valence and Rydberg excited states of BeH are presented in this article. A basis set of valence atomic natural orbitals has been augmented with a series of Rydberg orbitals that have been generated as centered onto the Be atom. The resulting basis set can be described as 4s2p1d/2s1p (Be/H) + 4s4p3d. It allows to calculate Rydberg states up to n= {3,4,5} of the s, p, and d series of Rydberg states. The FCI vertical ionization potential for the same basis set and geometry amounts to 8.298 eV. Other properties such as FCI electric dipole and quadrupole moments and FCI transition dipole and quadrupole moments have also been calculated. The results provide a set of benchmark values for energies, wave functions, properties, and transition properties for the five electron BeH molecule. Most of the states have large multiconfigurational character in spite of their essentially single excited nature and a number of them present an important Rydberg-valence mixing that is achieved through the mixed nature of the particle MO of the single excitations.  相似文献   

19.
《Chemical physics》1987,118(3):333-343
Relativistic configuration interaction calculations are performed for twelve electronic states of the HBr molecule. Ground-state spectroscopic properties and electronic dipole moment function are calculated and compared with theoretical and experimental data. Electric dipole moments for eleven excited states are presented and discussed. Electronic transition moments between the ground state and seven excited states are presented in the intermediate coupling scheme.  相似文献   

20.
The potential energy curves of the low-lying electronic states of yttrium carbide (YC) and its cation are calculated at the complete active space self-consistent field and the multireference single and double excitation configuration interaction (MRSDCI) levels of theory. Fifteen low-lying electronic states of YC with different spin and spatial symmetries were identified. The X (4)Sigma- state prevails as the ground state of YC, and a low-lying excited A (4)Pi state is found to be 1661 cm(-1) higher at the MRSDCI level. The computations of the authors support the assignment of the observed spectra to a B (4)Delta(Omega=72)<--A (4)Pi(Omega=52) transition with a reinterpretation that the A (4)Pi state is appreciably populated under the experimental conditions as it is less than 2000 cm(-1) of the X (4)Sigma- ground state, and the previously suggested (4)Pi ground state is reassigned to the first low-lying excited state of YC. The potential energy curves of YC+ confirm a previous prediction by Seivers et al. [J. Chem. Phys. 105, 6322 (1996)] that the ground state of YC+ is formed through a second pathway at higher energies. The calculated ionization energy of YC is 6.00 eV, while the adiabatic electron affinity is 0.95 eV at the MRSDCI level. The computed ionization energy of YC and dissociation energy of YC+ confirm the revised experimental estimates provided by Seivers et al. although direct experimental measurements yielded results with greater errors due to uncertainty in collisional cross sections for YC+ formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号