首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
Cascading failures in large-scale electric power transmission systems are an important cause of blackouts. Analysis of North American blackout data has revealed power law (algebraic) tails in the blackout size probability distribution which suggests a dynamical origin. With this observation as motivation, we examine cascading failure in a simplified transmission system model as load power demand is increased. The model represents generators, loads, the transmission line network, and the operating limits on these components. Two types of critical points are identified and are characterized by transmission line flow limits and generator capability limits, respectively. Results are obtained for tree networks of a regular form and a more realistic 118-node network. It is found that operation near critical points can produce power law tails in the blackout size probability distribution similar to those observed. The complex nature of the solution space due to the interaction of the two critical points is examined.(c) 2002 American Institute of Physics.  相似文献   

2.
Complex dynamics of blackouts in power transmission systems   总被引:1,自引:0,他引:1  
In order to study the complex global dynamics of a series of blackouts in power transmission systems a dynamical model of such a system has been developed. This model includes a simple representation of the dynamical evolution by incorporating the growth of power demand, the engineering response to system failures, and the upgrade of generator capacity. Two types of blackouts have been identified, each having different dynamical properties. One type of blackout involves the loss of load due to transmission lines reaching their load limits but no line outages. The second type of blackout is associated with multiple line outages. The dominance of one type of blackout over the other depends on operational conditions and the proximity of the system to one of its two critical points. The model displays characteristics such as a probability distribution of blackout sizes with power tails similar to that observed in real blackout data from North America.  相似文献   

3.
M. Gitterman 《Physica A》2009,388(7):1046-1056
The rate of a chemical reaction is expressed in terms of the correlation functions which are found from the full system of hydrodynamic equations in reactive systems. In the limiting cases one obtains all three types of behavior of reaction rates near the critical points found in experiments (slowing-down, speeding-up, insensitivity to criticality). This behavior depends on the number of reactive and inert components in a system, proximity and path of approach to the critical point.  相似文献   

4.
The Olami-Feder-Christensen earthquake model is often considered the prototype dissipative self-organized critical model. It is shown that the size distribution of events in this model results from a complex interplay of several different phenomena, including limited floating-point precision. Parallels between the dynamics of synchronized regions and those of a system with periodic boundary conditions are pointed out, and the asymptotic avalanche size distribution is conjectured to be dominated by avalanches of size 1, with the weight of larger avalanches converging towards zero as the system size increases.  相似文献   

5.
A class of continuum models with a critical end point is considered whose Hamiltonian [φ,ψ] involves two densities: a primary order-parameter field, φ, and a secondary (noncritical) one, ψ. Field-theoretic methods (renormalization group results in conjunction with functional methods) are used to give a systematic derivation of singularities occurring at critical end points. Specifically, the thermal singularity ∼ | t|2 - α of the first-order line on which the disordered or ordered phase coexists with the noncritical spectator phase, and the coexistence singularity ∼ | t|1 - α or ∼ | t|β of the secondary density <ψ> are derived. It is clarified how the renormalization group (RG) scenario found in position-space RG calculations, in which the critical end point and the critical line are mapped onto two separate fixed points CEP * and λ *, translates into field theory. The critical RG eigenexponents of CEP * and λ * are shown to match. CEP * is demonstrated to have a discontinuity eigenperturbation (with eigenvalue y = d), tangent to the unstable trajectory that emanates from CEP * and leads to λ *. The nature and origin of this eigenperturbation as well as the role redundant operators play are elucidated. The results validate that the critical behavior at the end point is the same as on the critical line. Received 18 January 2001  相似文献   

6.
In order to excite experimentalists to apply a dynamical control method [Zhao et al., Phys. Rev. E 53, 299 (1996); 57, 5358 (1998)], we further introduce a simplified control law in this paper. The law provides a convenient way (in certain circumstance a necessary way) for experimentalists to achieve the system control when the exact position of the desired control objective cannot be known in advance. The validity of the control law is rigidly verified when the system nears a bifurcation point but our numerical examples show that it can be extended to a wide parameter region practically.  相似文献   

7.
The critical points of generic paraxial ellipse fields consist of singular points of circular polarization, called C -points, and azimuthal stationary points, i.e., maxima, minima, and saddle points. We define these stationary points here and review their properties. The sign rule for ellipse fields requires that the sign of the singularity indices I(C)=+/-1/2 of the C -points on non-self-intersecting lines of constant azimuthal ellipse orientation (modulo pi/2), i.e., a -lines, alternate along the line. We verify this rule experimentally, using a newly developed interferometric technique to measure C -points and a -lines in an elliptically polarized random optical field.  相似文献   

8.
The sample averaged longitudinal two-terminal conductance and the respective Kubo conductivity are calculated at quantum critical points in the integer quantum Hall regime. In the limit of large system size, both transport quantities are found to be the same within numerical uncertainty in the lowest Landau band, and , respectively. In the second-lowest Landau band, a critical conductance is obtained which indeed supports the notion of universality. However, these numbers are significantly at variance with the hitherto commonly believed value . We argue that this difference is due to the multifractal structure of critical wave functions, a property that should generically show up in the conductance at quantum critical points.  相似文献   

9.
10.
Complex networks renormalization: flows and fixed points   总被引:1,自引:0,他引:1  
Recently, it has been claimed that some complex networks are self-similar under a convenient renormalization procedure. We present a general method to study renormalization flows in graphs. We find that the behavior of some variables under renormalization, such as the maximum number of connections of a node, obeys simple scaling laws, characterized by critical exponents. This is true for any class of graphs, from random to scale-free networks, from lattices to hierarchical graphs. Therefore, renormalization flows for graphs are similar as in the renormalization of spin systems. An analysis of classic renormalization for percolation and the Ising model on the lattice confirms this analogy. Critical exponents and scaling functions can be used to classify graphs in universality classes, and to uncover similarities between graphs that are inaccessible to a standard analysis.  相似文献   

11.
A general framework is considered for treating quantum corrections to the classical limit in the Wigner function formalism. We discuss the quantal effect on the classical phenomena such as period doubling and the breakup of KAM tori. By using an exact renormalization group method, the scaling factor for Planck's constant is derived as an eigenvalue of the linearized renormalization transformation.  相似文献   

12.
13.
Complex network approach for recurrence analysis of time series   总被引:1,自引:0,他引:1  
We propose a novel approach for analysing time series using complex network theory. We identify the recurrence matrix (calculated from time series) with the adjacency matrix of a complex network and apply measures for the characterisation of complex networks to this recurrence matrix. By using the logistic map, we illustrate the potential of these complex network measures for the detection of dynamical transitions. Finally, we apply the proposed approach to a marine palaeo-climate record and identify the subtle changes to the climate regime.  相似文献   

14.
Marc Mangel 《Physica A》1979,97(3):616-642
A generalized critical point can be characterized by non-linear dynamics. We formulate the deterministic and stochastic theory of relaxation at such a point. Canonical problems are used to motivate the general solutions. In the deterministic theory, we show that at the critical point certain modes have polynomial (rather than exponential) growth or decay. The stochastic relaxation rates can be calculated in terms of various incomplete special functions. Three examples are considered. First, a substrate inhibited reaction (marginal type dynamical system) is treated. Second, the relaxation of a mean field ferromagnet is considered. We obtain a result that generalizes the work of Griffiths et al. Third, we study the relaxation of a critical harmonic oscillator.  相似文献   

15.
Complex network analysis of water distribution systems   总被引:1,自引:0,他引:1  
This paper explores a variety of strategies for understanding the formation, structure, efficiency, and vulnerability of water distribution networks. Water supply systems are studied as spatially organized networks for which the practical applications of abstract evaluation methods are critically evaluated. Empirical data from benchmark networks are used to study the interplay between network structure and operational efficiency, reliability, and robustness. Structural measurements are undertaken to quantify properties such as redundancy and optimal-connectivity, herein proposed as constraints in network design optimization problems. The role of the supply demand structure toward system efficiency is studied, and an assessment of the vulnerability to failures based on the disconnection of nodes from the source(s) is undertaken. The absence of conventional degree-based hubs (observed through uncorrelated nonheterogeneous sparse topologies) prompts an alternative approach to studying structural vulnerability based on the identification of network cut-sets and optimal-connectivity invariants. A discussion on the scope, limitations, and possible future directions of this research is provided.  相似文献   

16.
Spatiotemporal self-organization is found in a wide range of distributed dynamical systems. The coupling of the active elements in these systems may be local or global or within a network, and the interactions may be diffusive or nondiffusive in nature. The articles in this focus issue describe biological and chemical systems designed to exhibit spatiotemporal dynamics and the control of such dynamics through feedback methods.  相似文献   

17.
18.
19.
A new approach based on Wasserstein distances, which are numerical costs of an optimal transportation problem, allows us to analyze nonlinear phenomena in a robust manner. The long-term behavior is reconstructed from time series, resulting in a probability distribution over phase space. Each pair of probability distributions is then assigned a numerical distance that quantifies the differences in their dynamical properties. From the totality of all these distances a low-dimensional representation in a Euclidean space is derived, in which the time series can be classified and statistically analyzed. This representation shows the functional relationships between the dynamical systems under study. It allows us to assess synchronization properties and also offers a new way of numerical bifurcation analysis.The statistical techniques for this distance-based analysis of dynamical systems are presented, filling a gap in the literature, and their application is discussed in a few examples of datasets arising in physiology and neuroscience, and in the well-known Hénon system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号