首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A computer simulation study to produce ultrasonic backscatter coefficients (BSCs) from red blood cell (RBC) clusters is discussed. The simulation algorithm is suitable for generating non-overlapping, isotropic, and fairly identical RBC clusters. RBCs were stacked following the hexagonal close packing (HCP) structure to form a compact spherical aggregate. Such an aggregate was repeated and placed randomly under non-overlapping condition in the three-dimensional space to mimic an aggregated blood sample. BSCs were computed between 750 KHz and 200 MHz for samples of various cluster sizes at different hematocrits. Magnitudes of BSCs increased with mean aggregate sizes at low frequencies (<20 MHz). The accuracy of the structure-factor-size-estimator (SFSE) method in determining mean aggregate size and packing factor was also examined. A good correlation (R(2) ≥ 0.94) between the mean size of aggregates predicted by the SFSE and true size was found for each hematocrit. This study shows that for spherical aggregates there exists a region for each hematocrit where SFSE works most accurately. Typically, error of SFSE in estimating mean cluster size was <20% for dimensions between 14 and 17 μm at 40% hematocrit. This study suggests that the theoretical framework of SFSE is valid under the assumption of isotropic aggregates.  相似文献   

2.
The objective of this paper is to propose an immersed boundary lattice Boltzmann method (IB-LBM) considering the ultrasonic effect to simulate red blood cell (RBC) aggregation and deformation in ultrasonic field. Numerical examples involving the typical streamline, normalized out-of-plane vorticity contours and vector fields in pure plasma under three different ultrasound intensities are presented. Meanwhile, the corresponding transient aggregation behavior of RBCs, with special emphasis on the detailed process of RBC deformation, is shown. The numerical results reveal that the ultrasound wave acted on the pure plasma can lead to recirculation flow, which contributes to the RBCs aggregation and deformation in microvessel. Furthermore, increasing the intensity of the ultrasound wave can significantly enhance the aggregation and deformation of the RBCs. And the formation of the RBCs aggregation leads to the fluctuated and dropped vorticity value of plasma in return.  相似文献   

3.
Ultrasound speckle image of blood is mainly attributed by red blood cells (RBCs) which tend to form RBC aggregates. RBC aggregates are separated into individual cells when the shear force is over a certain value. The dissociation of RBC aggregates has an influence on the performance of ultrasound speckle image velocimetry (SIV) technique in which a cross-correlation algorithm is applied to the speckle images to get the velocity field information. The present study aims to investigate the effect of the dissociation of RBC aggregates on the estimation quality of SIV technique. Ultrasound B-mode images were captured from the porcine blood circulating in a mock-up flow loop with varying flow rate. To verify the measurement performance of SIV technique, the centerline velocity measured by the SIV technique was compared with that measured by Doppler spectrograms. The dissociation of RBC aggregates was estimated by using decorrelation of speckle patterns in which the subsequent window was shifted as much as the speckle displacement to compensate decorrelation caused by in-plane loss of speckle patterns. The decorrelation of speckles is considerably increased according to shear rate. Its variations are different along the radial direction. Because the dissociation of RBC aggregates changes ultrasound speckles, the estimation quality of SIV technique is significantly correlated with the decorrelation of speckles. This degradation of measurement quality may be improved by increasing the data acquisition rate. This study would be useful for simultaneous measurement of hemodynamic and hemorheological information of blood flows using only speckle images.  相似文献   

4.
When placed in suspension red blood cells adhere face-to-face and form long, cylindrical, and sometimes branched structures called rouleaux. We use methods developed in statistical mechanics to compute various statistical properties describing the size and shape of rouleaux in thermodynamic equilibrium. This leads to analytical expressions for (1) the average number of rouleaux consisting ofn cells and havingm branch points; (2) the average number of cells per rouleau; (3) the average number of branch points per rouleau; and (4) the number of rouleaux withn cells in a system containing a total ofN cells. We also derive asymptotic formulas that simplify these analytic expressions, and present numerical comparisons of the exact and asymptotic results.  相似文献   

5.
A method for velocity estimation of sedimenting three-dimensional (3D) red blood cell (RBC) aggregates by means of an image processing technique is proposed. Successive images of RBC suspension near the wall of a container reveal rouleaux formation, sedimentation of 3D RBC aggregates and formation of the deposit of the cells. Plots of the position versus time for the 3D RBC aggregates were extracted by a processing of successive images of the suspension. The plots exhibit a quasi-linear structures in noisy background. With the use of the Hough transform the detection of the slope of the structures was performed and the velocity of the aggregates was estimated. To show the potential of the method spatio-temporal dependence of the aggregate velocity is presented for RBCs in plasma, RBCs in Dextran and for hardened cells at haematocrit 5%.  相似文献   

6.
One of the most common diseases that affect human red blood cells (RBCs) is anaemia. To diagnose anaemia, the following methods are typically employed: an identification process that is based on measuring the level of haemoglobin and the classification of RBCs based on a microscopic examination in blood smears. This paper presents a proposed algorithm for detecting and counting three types of anaemia-infected red blood cells in a microscopic coloured image using circular Hough transform and morphological tools. Anaemia cells include sickle, elliptocytosis, microsite cells and cells with unknown shapes. Additionally, the resulting data from the detection process have been analysed by a prevalent data analysis technique: the neural network. The experimental results for this model have demonstrated high accuracy for analysing healthy/unhealthy cells. This algorithm has achieved a maximum detection of approximately 97.8% of all cells in 21 microscopic images. Effectiveness rates of 100%, 98%, 100%, and 99.3% have been achieved using neural networks for sickle cells, elliptocytosis cells, microsite cells and cells with unknown shapes, respectively.  相似文献   

7.
8.
We analyze theoretically both the static and dynamic fluctuation spectra of the red blood cell in a unified manner, using a simple model of the composite membrane. In this model, the two-dimensional spectrin network that forms the cytoskeleton is treated as a rigid shell, located at a fixed, average distance from the lipid bilayer. The cytoskeleton thereby confines both the static and dynamic fluctuations of the lipid bilayer. The sparse connections of the cytoskeleton and bilayer induce a surface tension, for wavelengths larger than the bilayer persistence length. The predictions of the model give a consistent account for both the wave vector and frequency dependence of the experimental data.  相似文献   

9.
The motion of a red blood cell suspended in blood plasma in a two-beam plane interference field was studied experimentally. A cw Argon Ion laser was used. A model is proposed to describe the observed motion. The model is based on a balance between the optical gradient force and the drag force, and yields the location of the cell as a function of time, starting from a stationary position at an arbitrary distance from a dark fringe until becoming trapped at the center of the closest bright fringe. It is suggested that the discrepancy between the predictions of the model and the observed motion is attributable to the influence of the wall close to which the cell flows.  相似文献   

10.
There has been interest for a number of years in the possibility of separating blood into cells and plasma by methods other than centrifugation, so that the plasma can be analysed on-line. Cells in whole blood normally occupy about 45% of the suspension volume. It has been shown with a number of different cell types, such as yeast and bacteria, that for concentrations of this order the cells are not as efficiently harvested by ultrasound as those for lower concentrations. In this study, removal of cells from 3-4 ml whole blood volumes has been examined in ultrasonic standing wave fields from tubular transducers driven at a frequency of 1.6 MHz. Samples of whole human blood (n = 11) from two volunteers have been processed by three tubular transducers where high levels of cell removal, 99.7% on average, have been demonstrated with high reproducibility between samples as well as for different transducers.  相似文献   

11.
12.
Summary The experimental determination of the static structure factor of liquid mercury at room temperature has been done by employing a neutron beam from a steady source (Triga reactor at Casaccia, Rome). The anomalous behaviour of the structure factor has been found enough in agreement with previous X-ray measurements. The present data have been used to test a potential function including Friedel oscillations, by a Monte Carlo simulation.
Riassunto Il fattore di struttura statico del mercurio liquido è stato misurato a temperatura ambiente per mezzo della diffrazione di neutroni termici. L'esperimento è stato realizzato presso la sorgente continua della Casaccia (Reattore Triga, Casaccia, Roma). Il comportamento anomalo del fattore di struttura, trovato in esperimenti di diffrazione di raggi X, è confermato dalla presente misura di neutroni. I dati sperimentali sono stati usati per verificare l'ipotesi di un potenziale interatomico contenente le oscillazioni di Friedel. I risultati di una simulazione Monte Carlo sono presentati.
  相似文献   

13.
Synthesis of scorodite (FeAsO4·2H2O) using dynamic action agglomeration and the oxidation effect from ultrasound irradiation was investigated. The effect of different reaction temperatures (90, 70, 50, and 30 °C) on the size and morphology of scorodite particles synthesized under O2 gas flow and ultrasound irradiation was explored because the generation of fine bubbles depends on the solution temperature. At 90 °C, the size of scorodite particles was non-homogeneous (from fine particles (<1 μm) to large particles (>10 μm)). The oxidation–reduction potential (ORP) and yield at 90 °C showed lower values than those at 70 °C. The scorodite particles, including fine and non-homogeneous particles, were generated by a decrease in the oxidation of Fe(II) to Fe(III) and promotion of dissolution caused by the generation of radicals and jet flow from ultrasound irradiation. Using ultrasound irradiation in the synthesis of scorodite at low temperature (30 °C) resulted in the appearance of scorodite peaks in the X-ray diffraction (XRD) pattern after a reaction time of 3 h. The peaks became more intense with a reaction temperature of 50 °C and crystalline scorodite was obtained. Therefore, ultrasound irradiation can enable the synthesis of scorodite at 30 °C as well as the synthesis of large particles (>10 μm) at higher temperature. Oxide radicals and jet flow generated by ultrasound irradiation contributed significantly to the synthesis and crystal growth of scorodite.  相似文献   

14.
空间选择性降噪法提取血流超声多普勒信号   总被引:2,自引:1,他引:1  
医学超声多普勒系统的高通滤波器在消除血管壁搏动带来的回波干扰时,也滤除了低速血流信息。为提取完整的血流超声多普勒信号,提出一种基于空间选择性降噪的方法。根据血管壁超声多普勒信号在小波尺度空间上的相关性,采用空间选择性降噪技术对管壁信号进行初步估计;然后用小波阈值滤波法消除管壁信号中残留的血流信号;最后从混合信号中减去管壁信号得到血流信号。对计算机仿真超声多普勒信号和人体颈总动脉超声多普勒信号应用本方法,实验结果表明:空间选择性降噪法能在较大的管壁/血流功率比范围内提取完整的血流信号,其平均相对误差比高通滤波器的结果降低了约45%。该方法有望成为超声多普勒系统中滤除管壁信号的一种有效方法。  相似文献   

15.
The frequency dependence of RF signals backscattered from random media (tissues) has been used to describe the microstructure of the media. The frequency dependence of the backscattered RF signal is seen in the power spectrum. Estimates of scatterer properties (average scatterer size) from an interrogated medium are made by minimizing the average squared deviation (MASD) between the measured power spectrum and a theoretical power spectrum over an analysis bandwidth. Estimates of the scatterer properties become increasingly inaccurate as the average signal to noise ratio (SNR) over the analysis bandwidth becomes smaller. Some frequency components in the analysis bandwidth of the measured power spectrum will have smaller SNR than other frequency components. The accuracy of estimates can be improved by weighting the frequency components that have the smallest SNR less than the frequencies with the largest SNR in the MASD. A weighting function is devised that minimizes the noise effects on the estimates of the average scatterer sizes. Simulations and phantom experiments are conducted that show the weighting function gives improved estimates in an attenuating medium. The weighting function is applied to parametric images using scatterer size estimates of a rat that had developed a spontaneous mammary tumor.  相似文献   

16.
The focused ultrasound plays a role in localization and modulating the scattering light in ultrasound- modulated optical tomography (UOT). Both the modulation efficiency of the scattering light and the spatial resolution of UOT are determined by ultrasound. The effects of repetition frequency and pulse energy of impulse ultrasound on the modulated scattering light are derived through experiment in this letter. Purthermore, we compare the imaging sensitivity with 1, 2.25, 5, and 10 MHz center frequencies of impulse ultrasound. Experimental results demonstrate that better signal-to-noise ratios and higher sensitivities can be gained by use of more intense ultrasound and lower ultrasound frequencies.  相似文献   

17.
18.
An experimental study was conducted to characterize fundamental behavior of detonation waves propagating across an array of reactant jets inside a narrow channel, which simulated an unwrapped rotating detonation engine (RDE) configuration. Several key flow features in an ethylene-oxygen combustor were explored by sending detonation waves across reactant jets entering into cold bounding gas as well as hot combustion products. In this setup, ethylene and oxygen were injected separately into each recessed injector tube, while a total of 15 injectors were used to establish a partially premixed reactant jet array. The results revealed various details of transient flowfield, including a complex detonation wave front leading a curved oblique shock wave, the unsteady production of transverse waves at the edge of the reactant jets, and the onset of suppressed reactant jets re-entering the combustor following a detonation wave passage. The visualization images showed a complex, multidimensional, and highly irregular detonation wave front. It appeared non-uniform mixing of reactant jets lead to dynamic transverse wave structure. The refreshed reactant jets evolving in the wake of the detonation wave were severely distorted, indicating the effect of dynamic flowfield and rapid pressure change. The results suggest that the mixing between the fuel and oxidizer, as well as the mixing between the fresh reactants and the background products, should affect the stability of the RDE combustor processes.  相似文献   

19.
The current work deals with the use of high-frequency quantitative backscatter acoustic microscopy for the evaluation of the biointegration of microporous polymer implants used as support of artificial cornea. A three-dimensional (3-D) 80 MHz ultrasound microscope (25 microns axial resolution at focus) was used for the imaging and characterization of the progressive biointegration of polymers implanted in rabbit cornea. In-vitro and in-vivo studies were performed. Quantitative assessment of the structural changes in the biomaterial was performed using the spectral analysis of the radio frequency signal and the estimation of acoustic parameters in the 10-65 MHz frequency bandwidth. Correlation of in-vitro ultrasound data with histologic findings has shown that attenuation and backscatter coefficients are sensitive to the changes in the polymer pore content with time. Our results obtained in vivo demonstrated that 3-D 80 MHz echography coupled with quantitative characterization provide a unique tool for the non-invasive and objective follow-up of the implant biointegration and should contribute to clinical management of artificial cornea.  相似文献   

20.
Phosphoenolpyruvate (PEP) is a phosphorylated glycolytic intermediate that can penetrate the RBC membrane and be metabolized to 2,3-DPG and ATP. In this study, we evaluated the effects of PEP treatment on canine red blood cells (RBCs) cryopreserved with 12.5% (w/v) HES. RBCs were incubated for 30, 60, and 90 min at 37 degrees C with PEP solution containing 60 mM mannitol, 30 mM sodium chloride, 25 mM glucose, 1 mM adenine and 50 mM PEP (340 m osm/kg), pH 6.0 and then cryopreserved in liquid nitrogen with 12.5% (w/v) HES for 2 weeks. 2,3-DPG and saline stabilities of the PEP treated groups were increased and osmotic fragility indices were significantly decreased compared to the untreated control group. There were no differences in 2,3-DPG levels within the PEP treated groups with different PEP incubation times. These results suggest that PEP treatment may be beneficial for the cryopreservation of canine RBCs with HES.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号