首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The authors use the analytical equation of state obtained by the discrete perturbation theory [A. L. Benavides and A. Gil-Villegas, Mol. Phys. 97, 1225 (1999)] to study the phase diagram of fluids with discrete spherical potentials formed by a repulsive square-shoulder plus an attractive square-well interaction (SS+SW). This interaction is characterized by the usual energy and size parameters plus three dimensionless parameters: two of them measuring the widths of the SS and the SW and the third the relative height of the SS. The matter of interest is that, for certain values of the interaction parameters, the SS+SW systems exhibit more than one first-order fluid-fluid transition. The evidence that several real substances (such as water, phosphorus, carbon, and silica, among others) exhibit an extra liquid-liquid transition has drawn interest into the study of interactions responsible for this behavior. The simple SS+SW fluid is one of the systems that, in spite of being spherically symmetric, shows multiple fluid-fluid transitions. In this work the authors investigate systematically the effect on the phase diagram of varying the interaction parameters. The use of an analytical free-energy equation gives a clear thermodynamic picture of the emergence of different types of critical points, throwing new light on the phase behavior of these fluids and thus clarifying previous results obtained by other techniques. The interplay of attractive and repulsive forces with several scale lengths produces very rich phase diagrams, including cases with three critical points. The region of the interaction-parameter space where multiple critical points appear is mapped for various families of interactions.  相似文献   

2.
Convergent theoretical evidence, based on self-consistent integral equations for the pair structure and on Monte Carlo simulations, is presented for the existence of small simultaneous jump discontinuities of several thermodynamic and structural properties of systems of colloidal particles with competing short-range attractive and long-range repulsive interactions, under physical conditions close to the onset of particle clustering. The discontinuities thus provide a signature of the transition from a homogeneous fluid phase to a locally inhomogeneous cluster phase.  相似文献   

3.
The thermodynamic and structural properties of purely repulsive hard-core Yukawa particles in the fluid state are determined through Monte Carlo simulation and modeled using perturbation theory and integral equation theory in the mean spherical approximation (MSA). Systems of particles with Yukawa screening lengths of 1.8, 3.0, and 5.0 are examined with results compared to variations of MSA and perturbation theory. Thermodynamic properties were predicted well by both theories in the fluid region up to the fluid-solid phase boundary. Further, we found that a simplified exponential version of the MSA is the most accurate at predicting radial distribution function at contact. Radial distribution function of repulsive hard-core Yukawa particles are also reported. The results show that methods based on MSA and perturbation theory that are typically applied to the attractive hard-core Yukawa potential can also be extended to the purely repulsive hard-core Yukawa potential.  相似文献   

4.
A density functional theory is proposed for an inhomogeneous hard-core Yukawa (HCY) fluid based on Rosenfeld's perturbative method. The excess Helmholtz energy functional is derived from a modified fundamental measure theory for the hard-core repulsion and a quadratic functional Taylor expansion for the long-ranged attractive or repulsive interactions. To test the established theory, grand canonical ensemble Monte Carlo simulations are carried out to simulate the density profiles of attractive and repulsive HCY fluid near a wall. Comparison with the results from the Monte Carlo simulations shows that the present density functional theory gives accurate density profiles for both attractive and repulsive HCY fluid near a wall. Both the present theory and simulations suggest that there is depletion for attractive HCY fluid at low temperature, but no depletion is found for repulsive HCY fluid. The calculated results indicate that the present density functional theory is better than those of the modified version of the Lovett-Mou-Buff-Wertheim and other density functional theories. The present theory is simple in form and computationally efficient. It predicts accurate radial distribution functions of both attractive and repulsive HCY fluid except for the repulsive case at high density, where the theory overestimates the radial distribution function in the vicinity of contact.  相似文献   

5.
We perform Gibbs ensemble Monte Carlo (GEMC) simulations of a one-component system of hard spheres with a repulsive shoulder and an attractive well. We show the existence of two distinct liquid-gas and liquid-liquid phase equilibria. The GEMC estimate of the critical parameters, as following from an interpolation of the binodal points, is only slightly influenced by finite size effects. The liquid-gas critical temperature and pressure are lower than those of the liquid-liquid phase separation. A discussion of our findings in comparison with those of previous numerical studies is also presented.  相似文献   

6.
The properties of a simple one-dimensional lattice model with two repulsive ranges are studied in terms of its analytic solution. Its phase behavior is characterized by the presence of a disorder-order-disorder transition (or a fluid-solid-fluid transition in lattice gas language). A similar situation was discussed by Hemmer and Stell [Phys. Rev. Lett. 24, 1284 (1970)] when considering the purely repulsive version of their ramp potential. The melting of the solid phase, when pressure is increased along an isotherm, is a feature common to both models and one of the characteristic features of water.  相似文献   

7.
Standard Monte Carlo simulations are carried out to assess the accuracy of theoretical predictions for the structural properties of a model fluid interacting through a hard-core two-Yukawa potential composed of a short-range attractive well next to a hard repulsive core, followed by a smooth, long-range repulsive tail. Theoretical calculations are performed in the framework provided by the Ornstein-Zernike equation, solved either analytically with the mean spherical approximation (MSA) or iteratively with the hypernetted-chain (HNC) closure. Our analysis shows that both theories are generally accurate in a thermodynamic region corresponding to a dense vapor phase around the critical point. For a suitable choice of potential parameters, namely, when the attractive well is deep and/or large enough, the static structure factor displays a secondary low-Q peak. In this case HNC predictions closely follow the simulation results, whereas MSA results progressively worsen the more pronounced this low-Q peak is. We discuss the appearance of such a peak, also experimentally observed in colloidal suspensions and protein solutions, in terms of the formation of equilibrium clusters in the homogeneous fluid.  相似文献   

8.
We theoretically discuss, using density-functional theory, the phase stability of nematic and smectic ordering in a suspension of platelets of the same thickness but with a high polydispersity in diameter, and study the influence of polydispersity on this stability. The platelets are assumed to interact like hard objects, but additional soft attractive and repulsive interactions, meant to represent the effect of depletion interactions due to the addition of nonabsorbing polymer, or of screened Coulomb interactions between charged platelets in an aqueous solvent, respectively, are also considered. The aspect (diameter-to-thickness) ratio is taken to be very high, in order to model solutions of mineral platelets recently explored experimentally. In this regime a high degree of orientational ordering occurs; therefore, the model platelets can be taken as completely parallel and are amenable to analysis via a fundamental-measure theory. Our focus is on the nematic versus smectic phase interplay, since a high degree of polydispersity in diameter suppresses the formation of the columnar phase. When interactions are purely hard, the theory predicts a continuous nematic-to-smectic transition, regardless of the degree of diameter polydispersity. However, polydispersity enhances the stability of the smectic phase against the nematic phase. Predictions for the case where an additional soft interaction is added are obtained using mean-field perturbation theory. In the case of the one-component fluid, the transition remains continuous for repulsive forces, and the smectic phase becomes more stable as the range of the interaction is decreased. The opposite behavior with respect to the range is observed for attractive forces, and in fact the transition becomes of first order below a tricritical point. Also, for attractive interactions, nematic demixing appears, with an associated critical point. When platelet polydispersity is introduced the tricritical temperature shifts to very high values.  相似文献   

9.
A general approach based on the Parsons-Lee theory for soft repulsive molecular fluids is employed to investigate the nematogenic behavior of prolate thermotropic liquid crystals over a broad temperature range. The theory is solved for the particular case of the Kihara soft repulsive spherocylinder model, which is mapped into an effective hard core interaction with a temperature-dependent molecular diameter, expected to resemble the average size and shape of the soft molecules at a given temperature. The reduction of the effective molecular diameter with temperature in the Kihara soft repulsive fluid implies implicitly an increase of the elongation of the molecule and induces the stabilization of the nematic phase at smaller effective packing fractions, contrary to what is found for other fluid models. The rationalization of this effect in terms of excluded volume steric arguments is corroborated by the good general agreement between the Parsons-Lee approach and Monte Carlo simulations for the equation of state of the fluid in the vicinity of the isotropic-nematic transition.  相似文献   

10.
We present a theoretical study of the structural, thermodynamic, and transport properties of a supercritical fluid comprising particles interacting via isotropic attractive core-softened potential. The shear viscosity and self-diffusion coefficient are computed on the basis of the mode-coupling theory, with required structural input obtained from the thermodynamically self-consistent integral equation theory. We also consider dilute solutes in a core-softened fluid and use the anisotropic integral equation theory to obtain the solute-solute potential of mean force, which yields the second virial coefficient. We analyze its dependence on the solvent density and solute-solvent interaction strength.  相似文献   

11.
The effect of varying wall-particle and particle-particle interactions on the density profiles near a single wall and the solvation forces between two walls immersed in a fluid of particles is investigated by grand canonical Monte Carlo simulations. Attractive and repulsive particle-particle and particle-wall interactions are modeled by a versatile hard-core Yukawa form. These simulation results are compared to theoretical calculations using the hypernetted chain integral equation technique, as well as with fundamental measure density functional theory (DFT), where particle-particle interactions are either treated as a first order perturbation using the radial distribution function or else with a DFT based on the direct-correlation function. All three theoretical approaches reproduce the main trends fairly well, but exhibit inconsistent accuracy, particularly for attractive particle-particle interactions. We show that the wall-particle and particle-particle attractions can couple together to induce a nonlinear enhancement of the adsorption and a related "repulsion through attraction" effect for the effective wall-wall forces. We also investigate the phenomenon of bridging, where an attractive wall-particle interaction induces strongly attractive solvation forces.  相似文献   

12.
Phase diagram is calculated by a recently proposed third-order thermodynamic perturbation theory (TPT) for fluid phase and a recently proposed first-order TPT for solid phases; the underlying interparticle potential consists of a hard sphere repulsion and a perturbation tail of an attractive inverse power law type or Yukawa type whose range varies with bulk densities. It is found that besides usual phase transitions associated with density-independent potentials, the density dependence of the perturbation tail evokes some additional novel phase transitions including isostructural solid-solid transition and liquid-liquid transition. Novel triple points are also exhibited which includes stable fluid (vapor or liquid)-face-centered cubic(fcc)-fcc and liquid-liquid-fcc, metastable liquid-body-centered cubic(bcc)-bcc. It also is found that the phase diagram sensitively depends on the density dependence and the concrete mathematical form of the underlying potentials. Some of the disclosed novel transitions has been observed experimentally in complex fluids and molecular liquids, while others still remain to be experimentally verified.  相似文献   

13.
《Liquid crystals》1997,22(3):317-326
A perturbed hard-sphere-chain (PHSC) equation of state is presented to compute nematicisotropic equilibria for thermotropic liquid crystals, including mixtures. The equation of state consists of an isotropic term and an anisotropic term given by the Maier-Saupe theory whose contribution disappears in the isotropic phase. The isotropic contribution is the recently presented PHSC equation of state for normal fluids and polymers which uses a reference equation of state for athermal hard-sphere chains and a perturbation theory for the squarewell fluid of variable well width. The PHSC equation of state gives excellent correlations of pure-component pressure-volume-temperature data in the isotropic region and, combined with the Maier-Saupe theory, correlates the dependence of nematic-isotropic transition temperature on the pressure. Theory also predicts a nematic-isotropic biphasic region and liquid-liquid phase separation in a temperature-composition diagram of binary mixtures containing a nematic liquid crystal and a normal fluid or polymer. Theory and experiment show good agreement for pure fluids as well as for mixtures.  相似文献   

14.
Lattice fluid can describe a vapor–liquid transition but not a solid–fluid transition. In this work, we propose a simple and analytic term which yields a solid–fluid transition when coupled with a lattice based equation of state (EOS). The proposed term is derived based on the two assumptions that (1) solid can be considered as highly associated phase affected by strong attractive force and (2) this force is distinct from the conventional attractive forces yielding a vapor–liquid transition. To formulate these assumptions, we extend Veytsman statistics by modifying its density dependency. The derived term was combined with a quasi-chemical nonrandom lattice fluid theory (QLF) developed by the authors. The combined model was found to require only two parameters besides 3 QLF parameters for physical properties calculation of three phases. When tested against equilibrium properties of 8 components, the combined model was found to closely reproduce melting pressure, sublimation pressure, and vapor pressure, but underestimate solid density as well as heat of melting at the triple point temperature. It was found that the present approach can yield a solid–liquid transition at all temperatures.  相似文献   

15.
A recently proposed 3rd-order thermodynamic perturbation theory (TPT) is extended to its 5th-order version and non-uniform counterpart by supplementing with density functional theory (DFT) and a number of ansatzs for a bulk 2nd-order direct correlation function (DCF). Employment of the ansatzs DCF enables the resultant non-uniform formalism devoid of any adjustable parameter and free from numerically solving an Ornstein–Zernike integral equation theory. Density profiles calculated by the present non-uniform formalism for a hard core attractive Yukawa (HCAY) fluid near a spherical geometry are favorably compared with corresponding simulation data available in literature, and are more accurate than those based on a previous 3rd + 2nd-order perturbation DFT. The non-uniform 5th-order TPT is employed to investigate adsorption of the HCAY fluid onto a colloidal particle; it is disclosed that a depletion adsorption can be induced when the coexistence bulk fluid is situated in neighborhood of a critical point or near a bulk vapor–liquid coexistence gaseous phase or liquid phase density. A physical interpretation is given for such depletion adsorption and for its connection with parameters of the potential under consideration, which is ascribed to critical density fluctuations existing within a wide region of the bulk diagram. For a large spherical external potential inducing wetting transition, it is found that only round wetting transition is found instead of 1st-order pre-wetting transition in the case of a planar wall external potential, and the wetting transition temperature increases relative to that for the planar wall external potential. The present theoretical results for wetting transitions are supported by previous investigation based on thermodynamic considerations and a phenomenological Landau mean field theory, and are also in conformity with the present qualitative physical interpretation.  相似文献   

16.
We consider binary mixtures of soft repulsive spherical particles and calculate the depletion interaction between two big spheres mediated by the fluid of small spheres, using different theoretical and simulation methods. The validity of the theoretical approach, a virial expansion in terms of the density of the small spheres, is checked against simulation results. Attention is given to the approach toward the hard-sphere limit and to the effect of density and temperature on the strength of the depletion potential. Our results indicate, surprisingly, that even a modest degree of softness in the pair potential governing the direct interactions between the particles may lead to a significantly more attractive total effective potential for the big spheres than in the hard-sphere case. This might lead to significant differences in phase behavior, structure, and dynamics of a binary mixture of soft repulsive spheres. In particular, a perturbative scheme is applied to predict the phase diagram of an effective system of big spheres interacting via depletion forces for a size ratio of small and big spheres of 0.2; this diagram includes the usual fluid-solid transition but, in the soft-sphere case, the metastable fluid-fluid transition, which is probably absent in hard-sphere mixtures, is close to being stable with respect to direct fluid-solid coexistence. From these results, the interesting possibility arises that, for sufficiently soft repulsive particles, this phase transition could become stable. Possible implications for the phase behavior of real colloidal dispersions are discussed.  相似文献   

17.
We review, based on structural information, the mechanisms involved when putting in contact two nano-objects of opposite electrical charge, in the case of one negatively charged polyion, and a compact charged one. The central case is mixtures of PSS, a strong flexible polyanion (the salt of a strong acid, and with high linear charge density), and Lysozyme, a globular protein with a global positive charge. A wide accurate and consistent set of information in different situations is available on the structure at local scales (5-1000?), due to the possibility of matching, the reproducibility of the system, its well-defined electrostatics features, and the well-defined structures obtained. We have related these structures to the observations at macroscopic scale of the phase behavior, and to the expected mechanisms of coacervation. On the one hand, PSS/Lysozyme mixtures show accurately many of what is expected in PEL/protein complexation, and phase separation, as reviewed by de Kruif: under certain conditions some well-defined complexes are formed before any phase separation, they are close to neutral; even in excess of one species, complexes are only modestly charged (surface charges in PEL excess). Neutral cores are attracting each other, to form larger objects responsible for large turbidity. They should lead the system to phase separation; this is observed in the more dilute samples, while in more concentrated ones the lack of separation in turbid samples is explained by locking effects between fractal aggregates. On the other hand, although some of the features just listed are the same required for coacervation, this phase transition is not really obtained. The phase separation has all the macroscopic aspects of a fluid (undifferentiated liquid/gas phase) - solid transition, not of a fluid-fluid (liquid-liquid) one, which would correspond to real coacervation). The origin of this can be found in the interaction potential between primary complexes formed (globules), which agrees qualitatively with a potential shape of the type repulsive long range attractive very short range. Finally we have considered two other systems with accurate structural information, to see whether other situations can be found. For Pectin, the same situation as PSS can be found, as well as other states, without solid precipitation, but possibly with incomplete coacervation, corresponding to differences in the globular structure. It is understandable that these systems show smoother interaction potential between the complexes (globules) likely to produce liquid-liquid transition. Finally, we briefly recall new results on Hyaluronan/Lysozyme, which present clear signs of coacervation in two liquid phases, and at the same time the existence of non-globular complexes, of specific geometry (thin rods) before any phase separation. These mixtures fulfill many of the requirements for complex coacervation, while other theories should also be checked like the one of Shklovskii et al.  相似文献   

18.
The model of heterophase fluctuations is developed accounting frustration of the mesoscopic solidlike fluctuons. Within the framework of this model, the glass transition and polyamorphous transformations are considered. It is shown that the frustration increases the temperature range in which the heterophase liquid state exists. the upper and lower boundaries of this temperature range are determined. These boundaries separate different phase states-amorphous solid, heterophase liquid, and fluid phases. Polyamorphous liquid-liquid transitions in the liquid are investigated. Frustration can call forth continuous fluid-solid phase transformation avoiding the first- or second-order phase transition. Conditions under which the first-order phase transition fraction takes place are formulated. Two scenarios of the first-order liquid-liquid polyamorphous transformation are described. As an example the glacial phase formation and the first-order liquid-liquid phase transition in triphenyl phosphate are considered and discussed. Impact of frustration on the liquid crystallization and crystallinity of the glassy state is studied.  相似文献   

19.
Using density functional theory we calculate the density profiles of a binary solvent adsorbed around a pair of big solute particles. All species interact via repulsive Gaussian potentials. The solvent exhibits fluid-fluid phase separation, and for thermodynamic states near to coexistence the big particles can be surrounded by a thick adsorbed "wetting" film of the coexisting solvent phase. On reducing the separation between the two big particles we find there can be a "bridging" transition as the wetting films join to form a fluid bridge. The effective (solvent mediated) potential between the two big particles becomes long ranged and strongly attractive in the bridged configuration. Within our mean-field treatment the bridging transition results in a discontinuity in the solvent mediated force. We demonstrate that accounting for the phenomenon of bridging requires the presence of a nonzero bridge function in the correlations between the solute particles when our model fluid is described within a full mixture theory based upon the Ornstein-Zernike equations.  相似文献   

20.
We present an adaptive technique for the determination of the phase diagram of fluids within the integral equation theory. It enables an efficient and accurate systematic mapping of the thermodynamic space in order to construct the binodal and spinodal lines. Results are obtained with the thermodynamically consistent integral equation proposed by Sarkisov [J. Chem. Phys. 114, 9496 (2001)] within the tangent linear technique that yields an exact differentiation of correlation functions. The generality of the numerical approach is assessed by determining both the liquid-vapor coexistence and the critical parameters of the generalized Lennard-Jones (n,6) potentials with varying repulsive part, including the hard-sphere limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号