首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Polydimethyldiallylammonium chloride (PDADMAC) and polystyrene sulfonate (PSS) have been used to build-up polyelectrolyte multilayers (PEMs) on chemical soft wood fibres and on SiO2 at various electrolyte concentrations. Adsorption onto SiO2 was studied using a stagnation point adsorption reflectometer (SPAR), and the adsorbed amount of PDADMAC and PSS on the fibres was determined using nitrogen analysis and Sch?niger burning, respectively. The adsorption onto the two substrates was then compared. Paper testing showed that the tensile index (TI) increased by about 90% when 11 layers had been adsorbed, and that there was a correlation between the adsorbed amount and the increase in TI. It was also shown that the particular polymer present in the outermost layer significantly influenced the TI, and that PDADMAC produced a higher TI. A correlation between the adsorbed amount and the TI was also found. Individual fibres were partly treated with a PEM and analysed using a dynamic contact angle analyser (DCA) and environmental scanning electron microscopy (ESEM).  相似文献   

2.
Cationic polyallylamine (PAH), was adsorbed onto lignocellulosic fibres, and a fluorescent label on the polyelectrolyte enabled its location to be shown by confocal fluorescence microscopy. The adsorption time and ionic strength were varied to study their effect on the localisation of the adsorbed PAH. The microscopy showed that a long adsorption time, 24 h, and a high ionic strength, 10−1 M NaCl + 5 × 10−3 M NaHCO3 or higher, resulted in the adsorption of polyallylamine throughout the fibre walls. Shorter adsorption times and/or lower ionic strength resulted in adsorption only to the fibre exterior. By preparing sheets from fibres with polyelectrolyte adsorbed either to the exterior parts or into the fibre cell wall and testing their mechanical behaviour, a link was established between the localisation of adsorbed polyelectrolyte and the mechanical properties. Adsorption to the fibre exterior led to an increase in tensile strength and strain at break. The creep deformation at 90%RH was also slightly reduced by the adsorption of low molecular weight PAH (15 kDa). When polyallylamine was adsorbed throughout the wall of the lignocellulosic fibres, the mechanical properties were not however improved and the creep deformation at 90%RH actually increased somewhat.  相似文献   

3.
Adsorption of cationic high molecular weight polyacrylamides (CPAM) (M(w) is about 800 kDa) with different fractions of cationic units tau = 0.09 and tau = 0.018 onto silica surface was studied over a wide range of pH (4-9) and KCl concentration (c(s) = 10(-3)-10(-1) M) by in-situ null ellipsometry. We discuss how the adsorbed layer depends on the bulk conditions as well as kinetically responds to changes in solution conditions. The adsorbed amount Gamma of CPAM increases with pH for all studied electrolyte concentrations until a plateau Gamma is reached at pH > 6. At low pH we observed an increase in adsorbed amount with electrolyte concentration. At high pH there is no remarkable influence of added salt on the values of the adsorbed amount. The thickness of adsorbed polymer layers, obtained by ellipsometry, increases with electrolyte concentration and decreases with pH. At low c(s) and high pH the polyelectrolyte adsorbs in a flat conformation. An overcompensation of the surface charge (charge reversal) by the adsorbed polyelectrolyte is observed at high c(s) and low pH. To reveal the reversibility of the polyelectrolyte adsorption with respect to the adsorbed amount and layer thickness, parameters such as polyelectrolyte concentration (c(p)), c(s), and pH were changed during the experiment. Generally, similar adsorbed layer properties were obtained independent of whether adsorption was obtained directly to initially bare surface or by changing pH, c(s), or the concentration of polyelectrolyte solution in the presence of a preadsorbed layer, provided that the coverage of the preadsorbed layer was low. Once a steady state of the measured parameters (Gamma, d) was reached, experimental conditions were restored to the original values and corresponding changes in Gamma and adsorbed layer thickness were recorded. For initially low surface coverage it was impossible to restore the layer properties, and in this case we always ended up with higher coverage than the initial values. For initial high surface coverage it was usually possible to restore the initial layer properties. Thus, we concluded that polyelectrolyte appears only partially reversible to changes in the solution conditions due the slow rearrangement process within the adsorbed layer.  相似文献   

4.
We have studied the effect of the pH and surface charge of mica on the adsorption of the positively charged weak polyelectrolyte (PE) poly(2-vinylpyridine) (P2VP) using atomic force microscopy (AFM) single-molecule experiments. These AFM experiments were performed in situ directly under aqueous media. If the mica's surface and the PE are oppositely charged (pH > 3), the PE forms a flat adsorbed layer of two-dimensionally (2D) equilibrated self-avoiding random walk coils. The adsorbed layer's structure remains almost unchanged if the pH is decreased to pH 3 (the mica's surface is weakly charged). At pH 2 (the mica surface is decorated by spots of different electrical charges), the polyelectrolyte chains take the form of a 2D compressed coil. In this pH range, at an increased P2VP concentration in solution, the PE segments preferentially adsorb onto the top of previously adsorbed segments, rather than onto an unoccupied surface. We explain this behavior as being caused by the heterogeneous character of the charged surface and the competitive adsorption of hydronium ions. The further increase of polymer concentration results in a complete coverage of the mica substrate and the charge overcompensation by P2VP chains adsorbed on the similarly charged substrate, due to van der Waals forces.  相似文献   

5.
The electrophoretic mobility and temperature-dependent particle size of poly(N-isopropylacrylamide) (PNiPAM) microgels after alternating adsorption of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(sodium 4-styrenesulfonate) (PSS) have been determined. First a PNiPAM-co-acrylic acid (AAc) shell was added to the PNiPAM microgel, then PDADMAC and PSS were adsorbed alternately. The studies of the electrophoretic mobility revealed charge reversal when a polyelectrolyte (PE) layer was adsorbed. Particle size measurements revealed a strong influence of polyelectrolyte adsorption on the temperature-dependent particle swelling. The strong influence of the adsorbed polyelectrolyte on the particle size is in contrast to polyelectrolyte multilayer adsorption on rigid particles.  相似文献   

6.
In this paper cellulose nanofibrils were used together with a cationic polylelectrolyte, poly(amideamine) epichlorohydrin (PAE), to enhance the wet and the dry strength of paper. The adsorption of nanofibrils and PAE on cellulose model surfaces was studied using quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM). The differences in fibril and polyelectrolyte adding strategies onto cellulose fibres were studied by comparing layer-structures and nano-aggregates formed by the nanofibrils and PAE. The results showed that when PAE was first adsorbed on the model fibre surface a uniform and viscous layer of nanofibrils could be adsorbed. When PAE and nanofibrils were adsorbed as cationic aggregates a non-uniform and more rigid layer was adsorbed. Paper sheets were prepared using both the bi-layer and nano-aggregate adding strategy of the nanofibrils and PAE. When PAE and nanofibrils were adsorbed on pulp fibres as a bi-layer system significant increase in both wet and dry tensile strength of paper could be achieved even at low added amounts of PAE. When the substances were added as nano-aggregates the improvements in paper strength properties were not as significant. Bulk and surface nitrogen content analyses of the paper samples showed that the adding strategy does not affect the total adsorbed amount of PAE but it has a strong effect on distribution of substances in the paper matrix which has a crucial effect on paper wet and dry strength development.  相似文献   

7.
The adsorption of salicylaldoxime from aqueous solution by malachite has been studied and the nature of the adsorbed species has been determined by infrared spectroscopy. At low surface coverage, a basic salt is observed whereas the bis-salicylaldoximato-copper II complex is formed when tridimensional condensation of the adsorbate occurs on the surface. At this stage the surface becomes hydrophobic allowing the mineral to be floated. The kinetics of the adsorption process is first order with respect to the salicylaldoxime concentration. The mechanism of this process is discussed in the light of the spectroscopic results.  相似文献   

8.
The adsorption of hydrophobically modified polyelectrolytes derived from poly(maleic anhydride-alt-styrene) (P(MA-alt-St)) containing in their side chain aryl-alkyl groups onto amino- or methyl-terminated silicon wafers was investigated. The effect of the spacer group, the chemical nature of the side chain, molecular weight of polyelectrolyte, and ionic strength of solution on the polyelectrolyte adsorbed amount was studied by null ellipsometry. The adsorbed amount of polyelectrolyte increased with increasing ionic strength, in agreement with the screening-enhanced adsorption regime, indicating that hydrophobic interactions with the surface play an important role in the adsorption process. At constant ionic strength, the adsorbed amount was slightly higher for polyelectrolytes with larger alkyl side chain and decreased with the hydrophobicity of aryl group. The adsorption behavior is discussed in terms of the side chain flexibility of the polymer. Characteristics of the adsorbed layer were studied by atomic force microscopy (AFM) and contact angle measurements. AFM images show the presence of aggregates and closed globular structure of polyelectrolyte onto the amino- or methyl-terminated surface, which agrees with a 3D and 2D growth mechanism, respectively. Fluorescence measurements showed that the aggregation of polyelectrolyte containing the hydrophobic naphthyl group occurs already in the solution. However, the aggregation of polyelectrolytes containing the phenyl group in its side chain is not observed in solution but is induced by the amino-terminated surface. This difference can be explained in terms of the higher flexibility of side chain bearing the phenyl group. The polyelectrolyte films showed a high chemical heterogeneity and moderate hydrophobicity.  相似文献   

9.
 The stabilization and flocculation behavior of colloidal silica-particles with cationic polyelectrolytes (PE) is investigated. The zetapotentials, diffusion coefficients and flocculation rate constants of silica particles have been measured as a function of the adsorbed amount of cationic polyelectrolytes poly(diallyl-dimethyl-ammoniumchloride) (PDADMAC) of different molar masses and of statistic copolymers of DADMAC and N-methyl-N-vinyl-acetamide (NMVA) of various compositions at different salt concentrations and pH-values. Very fast flocculation due to van der Waals attraction occurs if the zetapotential is small. At low ionic strength this condition occurs just below the plateau of the adsorption isotherms where the surface charges are screened by adsorbed polycations. Additionally with high molecular polycations slow mosaic flocculation is observed at lower PE concentrations. At high ionic strength fast flocculation takes place at low macroion concentration due to the screening of the surface charges by adsorbed polycations and salt ions. At medium concentrations of polycations below plateau adorption slow bridging flocculation is observed. At plateau adsorption the suspensions become stabilized up to high ionic strength. At low salt concentration charge reversal at full coverage with polycations results in electrostatic repulsion. At high ionic strength the particles are stabilized sterically due to the osmotic repulsion of the long adsorbed PE tails. Therefore macroions of high molar mass are necessary to stabilize the suspension at high ionic strength. Received: 27 January 1998 Accepted: 23 March 1988  相似文献   

10.
The primary goal with this work is to create electrically conductive cellulose fibres, this has been done to explore possible new applications for fibre based material. This research uses various methods to create polyelectrolyte multilayers (PEMs) on bleached softwood fibres and on SiO2 model surfaces, by sequentially treating these materials with poly(3,4-ethylenedioxythiophene):poly(styrene sulphonate) (PEDOT:PSS) and poly(allyl amine) (PAH). Paper sheets were then produced from the PEM-modified pulp and evaluated in terms of tensile strength, adsorbed amount of polymer, and electrical conductivity. To evaluate the influence of fibre charge on the measured paper properties, pulps of two different initial fibre charge densities were prepared via carboxymethylation. Because of the bluish colour of PEDOT:PSS, the build-up of PEM could be easily followed, since the fibres grew increasingly darker blue throughout the modification sequence. The conductivity of the fibre network increased by 2−3 orders of magnitude when the pulp of a higher fibre charge density was used. This suggests that it is more important to create a fibrous network with a high fibre-fibre joint strength and a large total joined area in the sheet rather than to maximize the adsorbed amount of PEDOT:PSS. A difference in conductivity could also be noted depending on the polyelectrolyte adsorbed in the outer layer, PAH lowered the conductivity compared to PEDOT:PSS. Evaluating the mechanical properties revealed that the use of PEDOT:PSS reduces the tensile strength of the paper. When five double layers had been adsorbed onto the carboxymethylated sample in which PEDOT:PSS formed the outer layer, calculations indicated a 25% decrease in tensile strength compared to that of reference material without PEMs. ESEM studies indicate that PEM treatment produces a significantly changed and somewhat smoother fibre surface.  相似文献   

11.
A method of preparing model cellulose surfaces by the Langmuir–Blodgett (LB) technique with horizontal dipping procedure has been developed. The primary aim for the use of these surfaces was adsorption studies performed with the quartz crystal microbalance with dissipation (QCM-D) instrument. Hydrophobised cellulose (trimethylsilyl cellulose, TMSC) was deposited on the hydrophobic, polystyrene-coated QCM-D crystal. After 15 dipping cycles, the TMSC film fully covers the crystal surface. TMSC can easily be hydrolysed back to cellulose with acid hydrolysis. With this method a smooth, rigid, thin and reproducible cellulose film was obtained. Its morphology, coverage, chemical composition and wetting was further characterised using atomic force microscopy (AFM), X-Ray photoelectron spectroscopy (XPS), and contact angle measurements. The swelling behaviour and the stability of the cellulose film in aqueous solutions at different ionic strengths were studied using the QCM-D instrument. The swelling/deswelling properties of the cellulose film were those expected of polyelectrolytes with low charge density; some swelling occurred in pure water and the swelling decreased when the ionic strength was increased. No significant layer softening was detected during the swelling. The effect of electrolyte concentration and polymer charge density on the adsorption of cationic polyelectrolytes on the cellulose surface was also investigated. At low electrolyte concentration less of the highly charged PDADMAC was adsorbed as compared to low charged C-PAM. The adsorbed amount of PDADMAC increased with increasing ionic strength and a more compact layer was formed while the effect of electrolyte concentration on the adsorption of C-PAM was not as pronounced.  相似文献   

12.
Adsorption of cationic polyelectrolyte, a homopolymer of maleimide propyl trimethylammonium chloride (MPTMAC), on silica nanoparticles from aqueous solution was studied. The adsorbed amount of MPTMAC and the adsorption layer thickness from solutions of different pH, polyelectrolyte concentration, salt type, and salt concentration were measured. The adsorbed amount exhibited a maximum as a function of the electrolyte concentration. The onset of the decline in the adsorbed amount depended on the type of counterions. The thickness of the adsorption layer increased gradually with increased of electrolyte concentration and leveled off at high electrolyte concentration. The enhanced adsorption in the presence of Na2SO4 can be explained by the bivalent SO4(2-) causing a better shielding effect. With increasing pH the adsorbed amount of MPTMAC increased, whereas the thickness of an adsorbed layer of MPTMAC decreased. At low polyelectrolyte concentrations unstable silica suspensions were observed from a stability test. At high polyelectrolyte concentrations the higher particle coverage caused electrosteric stabilization of the dispersion. However, further increase in MPTMAC concentration after saturated adsorption would flocculate the dispersed system. At low pH, MPTMAC tending to create a loops or tails conformation stabilized the suspension.  相似文献   

13.
The adsorption of poly(vinylamine) (PVA) on poly(styrene sulfate) latex particles is studied, and its consequences on the charging behavior and suspension stability are investigated. The adsorption process is assessed by batch depletion experiments and time-resolved electrophoretic mobility measurements. The adsorption of PVA appears to be basically irreversible. The rate of adsorption decreases with decreasing polymer dose. At low polymer dose, the polymer coverage corresponds to the amount of the polyelectrolyte added, while at high polymer dose, the polymer coverage saturates the surface. Stability ratios are determined by dynamic light scattering, and strongly depend on the polymer dose and salt level. The aggregation is rapid near the isoelectric point (IEP), and it slows down when moving away from it. The charge neutralization is highly nonstoichiometric with charging ratios (CR) larger than unity, meaning that several charges on an adsorbed polyelectrolyte chain are necessary to neutralize a single charge on the particle surface. By comparing the IEP for particles and polyelectrolytes of different charge densities, we find a strong dependence of the CR on the mismatch between the average distances between individual charges on the surface and on the polyelectrolyte. A simple model is proposed to explain this trend.  相似文献   

14.
The influence of texture and surface chemistry on the phenol adsorption capacity of activated carbon fibres (ACFs) was studied. ACFs were prepared by carbonization of a phenolic textile fibre under nitrogen flow, followed by activation with H(2)O and CO(2) (under atmospheric pressure and supercritical state). The materials were characterised by N(2) and CO(2) adsorption, and by temperature programmed desorption studies. A strong correlation between the amount of adsorbed phenol and the micropore volume has been observed. The relationship between surface oxygen concentration and amount of physisorbed and chemisorbed phenol was assessed, and it was shown that higher amounts of surface oxygen groups decreased the phenol chemisorption capacity of ACFs.  相似文献   

15.
Dynamic surface elasticity of solutions of bovine serum albumin (BSA)/sodium polystyrene sulfonate (PSS) complexes has been measured as depending on the age of a surface, polyelectrolyte concentration, and solution pH by the oscillating-ring method. At pH values below the isoelectric point of BSA, the rate of variations in the surface properties increases due to a decrease in the electrostatic adsorption barrier as a result of a reduction in the total charge of the protein/polyelectrolyte complex. Therewith, a local maximum arises in the kinetic dependences of the surface elasticity, this maximum indicating the onset of the breakage of the tertiary structure of the protein in the surface layer. In the pH range corresponding to like charges of the protein and polyelectrolyte, variations in the surface properties slow down. In this case, the BSA/PSS complex is also formed via the interaction of PSS with those domains of globule surface that carry a charge opposite to the total charge of a protein molecule. A higher negative charge of the complex than that of protein globules increases the electrostatic adsorption barrier and decelerates variations in the surface properties. At the same time, the dependences of the surface elasticity on the surface pressure coincide with the dependences for the protein solution. Hence, the polyelectrolyte-protein interaction affects only the adsorption kinetics, while the surface properties in the vicinity of equilibrium are governed by adsorbed protein globules.  相似文献   

16.
In order to describe the influence of cationic polyelectrolytes on flocculation of disperse systems the adsorption of poly (diallyldimethylammonium chloride) (PDADMAC) onto silica, mica and acidic polymer latex was investigated. The plateau value of the adsorption isotherms grows with increasing surface charge density of the substrates and electrolyte concentration. The adsorbed layer of the polycation was characterized by zeta potential measurements with KCl solutions of constant ionic strength and varied pH. The zero point of the charge as well as the shape of the zeta potential–pH plot depends on the coverage of the surface with polycations. For fully covered substrates the zero point of the charge as well as the pKA and pKB values calculated by a stochastic search programme are independent of the substrate. Maximum flocculation was observed at about 30% of the plateau value of the adsorption isotherms.  相似文献   

17.
Cationic polyelectrolytes (polyallylamine and polyvinylamine with different molecular masses) were adsorbed onto lignocellulosic fibres from unbleached and unbeaten spruce chemical fibres with different kappa numbers to investigate the effects on the mechanical properties of the final paper materials. Adsorption isotherms were first established to determine the maximum quantity of polymer that could be adsorbed onto each type of fibre. Paper sheets were then made with different amounts of added polyelectrolyte, and the structural and mechanical properties of the sheets were investigated, as well as the effect of an extra heating. The use of fibres with different kappa numbers led to different responses in terms of adsorption, and thus to differences in the mechanical properties of the resulting sheets. The tensile strength index was significantly increased (almost 50 % improvement in the best case) as a consequence of this polyelectrolyte adsorption onto the fibres, even at as low an adsorption level as 2 mg/g. The heating of paper sheets for 10 min at 160 °C was also shown to improve the tensile strength index by about 10 % for pulps with high kappa number.  相似文献   

18.
The research reported in this paper demonstrates that the capacity of cotton fibres to adsorb cationic surfactants as well as the rate of the adsorption process can be increased by adsorbing carboxymethyl cellulose (CMC) onto the fibre surfaces; in addition, the adsorption can be restricted to the fibre surface. CMC was deposited by means of adsorption from an aqueous solution. The adsorption of N-cetylpyridinium chloride (CPC) from an aqueous solution onto the CMC-modified fibres was measured using UV-spectrometric determination of the surfactant concentration in the solution. Adsorption onto the cotton fibres was studied in a weakly basic environment (pH 8.5) where cotton fibres are negatively charged and the CPC ion is positively charged. Modification of the fibres by adsorption of CMC introduces new carboxyl groups onto the fibre surfaces, thereby increasing the adsorption capacity of the fibres for CPC. The initial rate of adsorption of CPC increased proportionally with the amount of charge; however, this rate slowed down at high degrees of coverage on fibres with a high charge. The adsorption of cationic surfactant to the anionic surface groups was stoichiometric, with no indication of multilayer or admicelle formation. It was evident that the acidic group content of the fibres was the primary factor determining cationic surfactant adsorption to these fibres.  相似文献   

19.
The equilibrium adsorption of polyelectrolytes with multiple types of ionizable groups is described using a modified Poisson-Boltzmann equation including charge regulation of both the polymer and the interface. A one-dimensional mean-field model is used in which the electrostatic potential is assumed constant in the lateral direction parallel to the surface. The electrostatic potential and ionization degrees of the different ionizable groups are calculated as function of the distance from the surface after which the electric and chemical contributions to the free energy are obtained. The various interactions between small ions, surface and polyelectrolyte are self-consistently considered in the model, such as the increase in charge of polyelectrolyte and surface upon adsorption as well as the displacement of small ions and the decrease of permittivity. These interactions may lead to complex dependencies of the adsorbed amount of polyelectrolyte on pH, ionic strength, and properties of the polymer (volume, permittivity, number, and type of ionizable groups) and of the surface (number of ionizable groups, pK, Stern capacity). For the adsorption of lysozyme on silica, the model qualitatively describes the gradual increase of adsorbed amount with pH up to a maximum value at pHc, which is below the iso-electric point, as well as the sharp decrease of adsorbed amount beyond pHc. With increasing ionic strength the adsorbed amount decreases (for pH > pHc), and pHc shifts to lower values.  相似文献   

20.
The site-binding model is very useful for describing the adsorption of ions and small ionized molecules. It has been slightly modified to include multi-site adsorption of larger molecules such as oligomers and low molecular weight polyelectrolytes. We describe alterations of the classical model and the results of calculations for adsorption of polyacrylic acid onto titanium dioxide as an example. The triple layer model is used to relate charge densities to interfacial potential profiles. Comparison between adsorption trends and the surface layer composition as a function of pH and ionic strength demonstrates the prominent influence of ions binding in the adsorption process. The site-binding model makes it easy to simulate the ions displacement associated with polyelectrolyte adsorption. Strongly bound electrolyte anions prevent polyacrylic acid from adsorbing, and, in contrast, electrostatic screening due to cation condensation makes it easier. Calculations of the pH change in the solution, due to adsorption, are also made by comparing ionization ratios of both the surface and polymer units in the adsorbed layer and before adsorption. Trends in electrokinetic potentials as a function of the solution's parameters are evaluated assuming the identity of the shearing surface and the inner boundary of the diffuse layer. All data compare well with experimental values. The very good agreement betwen the experiment and model calculations supports the fact that (small) polyelectrolyte molecules adsorb essentially flat on the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号