首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
近20年来,利用动植物等可再生资源代替当前广泛使用的石化材料成为热门研究方向,是消除污染、保护环境、实现绿色化学、推进人类社会与环境和谐发展的唯一途径.谷朊蛋白是谷类淀粉加工的副产物,是植物代谢产生的天然植物蛋白,一种生物可降解、可再生的天然高分子.由于其独特的粘弹性、延伸性、薄膜成型性和热凝固性等,越来越受到人们的重视,不仅拓宽了在食品工业中的应用领域,还可作为价格适宜、性能优良的高分子材料应用于其它领域.本文介绍了有关谷朊蛋白的组成、近年来国内外改性原理和方法,及其潜在的应用.  相似文献   

2.
采用廉价可生物降解的小麦谷朊蛋白为原料,经过羟甲基化和阳离子化改性合成类似聚酰胺聚胺环氧氯丙烷(PPE)的纸张增强剂. 经改性后,谷朊蛋白带有氮杂环丁烷结构、表氯醇和环氧基团3种功能基团,可与纤维形成共价键,且能发生自身交联,在纤维周围形成三维交联网络结构,提高纸张干、湿强度. 通过单因素试验,研究了甲醛、甲酸、温度、反应时间和环氧氯丙烷5种反应因素对纸张强度的影响. 优化合成条件下制备改性谷朊蛋白可使纸张干抗张强度提高35%,湿强保留率达20%. 改性后谷朊蛋白显阳离子性,加入纸浆中,可使得浆料体系Zeta电位升高,改善浆料的留着率,明显提高纸张强度. 结果表明,经羟甲基化和环氧氯丙烷加成改性的谷朊蛋白可以作为纸张的干强剂和湿强剂.  相似文献   

3.
Monoglyceride (MO) can form various liquid crystalline phases spontaneously in the presence of various amount of water at room temperature. The appropriate compositions from binary phase diagram of MO/H2O were selected to form cubic phases. The selected systems were studied at different salt concentrations and pH value using rheological methods. There was a weak effect of salt on viscoelastic properties of cubic phases formed from MO/H2O system. Hexagonal phase was formed when pH value was decreased or increased. The viscoelasticity of cubic phases was different from that of hexagonal liquid crystals. Rheological properties of MO/H2O cubic phases were stable at pH and salt concentration similar to physiological condition.  相似文献   

4.
聚丙烯共混物、共聚物具有复杂的凝聚态结构,其结构形态、相容性和相分离的研究一直是该领域的中心课题。与常规研究方法(DSC、DMA等)相比,动态流变学方法在研究聚合物结构与形态方面具有独特的优势,对聚合物形态结构的变化十分敏感。本文根据动态流变学基本理论,重点介绍和评述了动态流变学方法在研究聚丙烯及其共混物/共聚物体系形态结构、相容性以及相分离方面的最新进展。动态流变学方法被证明是研究聚丙烯基多相/多组分体系形态结构、相容性和相分离的有效手段。  相似文献   

5.
采用熔融共混方法制备了聚乳酸与聚氧化乙烯的共混物.细致研究了重均分子量分别为2 kDa、10kDa1、00 kDa和600 kDa的聚氧化乙烯对聚乳酸的改性效果,并使用DSC、DMA及旋转流变仪等分析了共混物的相容性、热行为、力学性能和流变行为.结果表明,在聚氧化乙烯的组分含量不超过20 wt%的前提下,共混体系保持为完全相容体系,当聚氧化乙烯的分子量超过10 kDa时,其对聚乳酸的增塑效果,不随分子量增加而降低;增加聚氧化乙烯的分子量,可以提高材料的弹性模量和熔体强度.  相似文献   

6.
LI Yan  侯万国 《应用化学》2008,25(8):974-0
阳离子淀粉;Mg-Al类水滑石;流变性;粘度  相似文献   

7.
表面活性剂的分子结构对蠕虫胶束的形成与性质有着重要影响。本文以十四酸和间苯三酚为起始原料,合成了一种三聚阴离子表面活性剂(2, 2', 2"-(苯基-1, 3, 5-三(氧))-三-十四酸钠,简写为Ph-TrisC14Na),并通过稳态和动态流变测试,研究了单组分的Ph-TrisC14Na和Ph-TrisC14Na/阳离子添加剂体系的粘弹性质。阳离子添加剂分别为正丁基三甲基溴化铵(C4TAB),正己基三甲基溴化铵(C6TAB)和正辛基三甲基溴化铵(C8TAB)。结果表明,依赖于独特的分子构型,Ph-TrisC14Na分子自身即可形成蠕虫胶束,使溶液表现出明显的粘弹性。阳离子添加剂的加入可进一步优化Ph-TrisC14Na的分子几何结构,促进蠕虫胶束更为快速地生长。随着阳离子添加剂疏水链长的增加,溶液的粘弹性显著增强,体系微结构对添加剂的敏感性也增加。对于50 mmol·L-1的Ph-TrisC14Na溶液来说,在C8TAB与Ph-TrisC14Na的摩尔比为0.5时,体系的零剪切粘度可达1535 Pa·s,蠕虫胶束的长度则达到4.0-7.5 μm。该体系体现出低聚表面活性剂在构筑表面活性剂粘弹溶液方面的优势,可拓展高粘弹性阴离子蠕虫胶束体系的研究范围。  相似文献   

8.
以丙烯酸(AA)单体的水溶液为水相,液体石蜡为油相,失水山梨醇三油酸酯(Span 85)和辛基苯基聚氧乙烯醚(Opan 10)为复合乳化剂,合成了淀粉/丙烯酸反相乳液;考察了乳化剂亲水亲油平衡值(HLB值)、油水比、乳化剂用量、单体浓度、温度对乳液稳定性和类型的影响.结果表明,合成淀粉/丙烯酸稳定反相乳液体系的适宜条件...  相似文献   

9.
聚合物的拉伸流动在吹膜、纺丝、热成型等加工中扮演着支配的角色,因此掌握聚合物熔体在拉伸条件下的流动行为对于控制和预测其加工性能具有重要意义。相对于剪切流动,拉伸粘度对于大分子的结构、填充粒子的各向异性、共混物中两相的结构等更加敏感。本文简要介绍了当前用于拉伸流变研究的常用装置及其原理,并举例描述了单一组分聚合物、聚合物纳米复合材料和聚合物共混物等体系拉伸流变研究的现状和成果,最后指出了当前拉伸流变研究领域存在的一些不足之处并进行了展望。  相似文献   

10.
淀粉是一种天然高分子材料,具有来源广泛、价格低廉、可再生、可降解等优点,在生物降解高分子材料领域中具有重要地位。淀粉塑化后较为柔软,类似于弹性体,如果能够用于聚合物的增韧改性,将对降低成本、保护环境有重要意义。目前,淀粉在聚合物共混改性中主要起填充、降低成本的作用,而作为弹性体增韧聚合物制备高抗冲聚合物复合材料还比较少。为了改善聚合物/淀粉复合材料的性能,可以采用淀粉塑化改性、淀粉化学改性、添加相容剂、添加弹性体协同淀粉增韧等方法。本文从以上4个方面总结了聚合物/淀粉复合材料的研究进展,讨论了目前聚合物/淀粉复合材料存在的问题,并对未来的发展方向进行展望。  相似文献   

11.
对多壁碳纳米管/高密度聚乙烯(MWNTs/HDPE)复合材料的导电性和动态流变行为进行了研究.发现复合材料的复数粘度η*随MWNTs含量φ的增大而增大.当φ>3wt%时,η*发生突变,在低ω区域表现为非牛顿流体行为,出现强烈的剪切变稀现象.将其称为流变渗流现象,对应的填料含量即渗流阈值φc.在动态储能模量(G′)、损耗模量(G″)与频率(ω)关系曲线上,随φ增加出现“第二平台”,第二平台的出现表明MWNTs与MWNTs之间、MWNTs与聚合物之间存在相互缠结形成网络的结构.同时发现,在tanδ~ω曲线上的低ω区出现凹谷.认为这是由于MWNTs长链结构在低ω时伸长/收缩,MWNTs与MWNTs相互接触形成了次级网络造成的.经过不同时间热处理后的ω扫描以及动态间扫描的结果证实了这种结构的存在.研究结果表明复合材料的流变渗流阈值与电渗流阈值相一致(均在3%~5%之间),动态流变行为与导电性存在一定的相关性.  相似文献   

12.
利用界面能原理使CB选择性分布于HDPE中成为复合导电相,固定CB在HDPE中的质量分数(20 wt%),控制CB/HDPE导电相在iPP中的含量,制备出一系列三元(iPP/HDPE/CB)导电复合材料,并研究其导电逾渗和流变逾渗行为.结果表明,在复合导电相含量为20 wt%时复合材料内即形成导电网络,在复合导电相含量30 wt%时出现流变网络.只有当复合导电相在材料中形成连续相时(60 wt%),损耗因子在频率扫描中才出现峰值.  相似文献   

13.
<正> 无机填料填充复合材料的性能,除了依赖于聚合物基体和填料固有的内在性质外,很大程度上依赖于它们之间的界面性质。因此,研究聚合物/填料界面相互作用,对合理地设计具有优良性能的复合材料具有十分重要的意义。 目前,还很难对粉末填料与聚合物基体之间界面相互作用进行定量的研究,而且关于这方面的报道也较少。本文利用接触角法测定了高岭土填料和尼龙6基体的表面自由能、界面张力、粘附功等热力学参数,对高岭土与尼龙6之间界面相互作用与复合材料力学性能、流变行为的关系进行了分析和探讨。  相似文献   

14.
粘度法研究壳聚糖与两性聚氨酯胶束间的相互作用   总被引:1,自引:0,他引:1  
通过粘度法考察了壳聚糖(CS)在盐酸水溶液中与表面带有正电荷的两性聚氨酯(APU)胶束的相互作用,并研究了小分子盐浓度、pH及不同混合方式对复合体系粘度的影响.结果表明:在壳聚糖/APU盐酸混合体系中,较高浓度下APU胶束与壳聚糖分子间的静电斥力作用导致壳聚糖大分子链的伸展,使体系粘度提高,同时降低了壳聚糖溶液对电解质、pH的敏感性;不同混合过程导致壳聚糖大分子构像及其与APU组装、复合形态有很大差别,使混合体系流变性表现出明显的不同.  相似文献   

15.
以聚酯型热塑性聚氨酯(thermoplastic polyurethane,TPU)、玻璃纤维(glass fiber,GF)和玻璃微珠(glass bead,GB)为主要原料制备了TPU/GF、TPU/GB共混物,考察了复合体系的热性能、微观结构、动态流变特性.研究发现,TPU是温敏型聚合物,其温敏性与材料的硬段含量有关,在加工过程中,除考虑剪切速率的影响外,需重点考虑温度对其加工性能的影响;GF,GB填充TPU体系具有良好的分散形态和界面结合牢度,GF和GB的加入能够增加体系的黏度,降低TPU的温敏性,加宽TPU的加工温度窗口,从而改善其成型加工性,并能一定程度地提高其耐热性.研究还发现,复合体系黏度的增加程度不仅和填料的含量有关,而且与填料的形状有关,可用等效直径表征.另外,从比表面积的角度比较了玻璃纤维和玻璃微珠对体系热稳定性的影响.  相似文献   

16.
应用两相模型探讨多壁碳纳米管(MWCNTs)填充聚苯乙烯(PS)复合体系的动态流变特性.结果表明,体系线性黏弹行为与PS本体的应变放大效应及MWCNTs填料相的弛豫密切相关.在不同温度下,应变放大因子(Af)随MWCNTs体积分数(φ)的变化规律符合扩散控制的粒子串聚集(CCA)模型.φ<0.020时,MWCNTs分散...  相似文献   

17.
王勇 《高分子科学》2009,(2):173-181
The main subject of this work is about the preparation of T-ZnOw/PS composites through different methods and the evaluation of mechanical properties of the composites.Different surface modification methods of T-ZnOw whiskers,the so called wet-type modification and dry-type modification,and different molding processing methods of T-ZnOw/PS composites,namely compression molding and injection molding,have been employed.Two different coupling agents, titanate coupling agent (NDZ105) and silane coupling agent...  相似文献   

18.
合成了一系列既含环氧丙烷聚醚(PPG)柔性间隔基、又含刚性介晶结构单元的端脲基活性改性剂(LCEUPPG),并对其改性环氧树脂E 51/双氰双胺(E 51/dicy)体系的固化反应活性、改性剂含量对增韧体系动态力学性能及冲击性能的影响进行了研究.结果表明:LCEUPPG的加入对固化体系具有明显的增韧作用,冲击强度提高了3~7倍;其对E 51/dicy固化反应具有明显的促进作用,可使固化反应表观活化能(Ea)降低50~70KJ/mol、固化温度降低30~40℃;体系的玻璃化转变温度(Tg)略有下降,但模量基本不降低或略有升高;β 转变向低温方向移动.  相似文献   

19.
LLDPE/纳米SiO_2复合材料的力学性能和光学性能研究   总被引:29,自引:0,他引:29  
采用熔融共混方法制备了LLDPE 纳米SiO2 复合材料 ,并对该体系的力学性能和光学性能进行了系统研究 .结果表明 ,随着纳米SiO2 的加入 ,复合材料的弹性模量显著提高 ,冲击强度与拉伸强度呈峰形变化 ,且均在SiO2 含量为 3phr左右达到最大值 .加入少量的纳米SiO2 后 ,复合材料薄膜对长波红外线 (7~ 1 1 μm)的吸收能力较LLDPE膜有了显著提高 ,透光率略有下降但雾度提高 ,透光质量得到改善 .同时表明 ,纳米SiO2 的表面处理方法对膜的光学性能有显著影响  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号