首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The packing chromatic number \(\chi _{\rho }(G)\) of a graph G is the smallest integer k such that there exists a k-vertex coloring of G in which any two vertices receiving color i are at distance at least \(i+1\). Let \(S^n\) be the base-3 Sierpiński graph of dimension n. It is proved that \(\chi _{\rho }(S^1) = 3\), \(\chi _{\rho }(S^2) = 5\), \(\chi _{\rho }(S^3) = \chi _{\rho }(S^4) = 7\), and that \(8\le \chi _\rho (S^n) \le 9\) holds for any \(n\ge 5\).  相似文献   

2.
In this paper, we study the first eigenvalue of Jacobi operator on an n-dimensional non-totally umbilical compact hypersurface with constant mean curvature H in the unit sphere \(S^{n+1}(1)\). We give an optimal upper bound for the first eigenvalue of Jacobi operator, which only depends on the mean curvature H and the dimension n. This bound is attained if and only if, \(\varphi :\ M \rightarrow S^{n+1}(1)\) is isometric to \(S^1(r)\times S^{n-1}(\sqrt{1-r^2})\) when \(H\ne 0\) or \(\varphi :\ M \rightarrow S^{n+1}(1)\) is isometric to a Clifford torus \( S^{n-k}\left( \sqrt{\dfrac{n-k}{n}}\right) \times S^k\left( \sqrt{\dfrac{k}{n}}\right) \), for \(k=1, 2, \ldots , n-1\) when \(H=0\).  相似文献   

3.
The concept of the inverse along an element was introduced by Mary in 2011. Later, Zhu et al. introduced the one-sided inverse along an element. In this paper, we first give a new existence criterion for the one-sided inverse along a product and characterize the existence of Moore–Penrose inverse by means of one-sided invertibility of certain element in a ring. In addition, we show that \(a\in S^{\dagger }\bigcap S^{\#}\) if and only if \((a^{*}a)^{k}\) is invertible along a if and only if \((aa^{*})^{k}\) is invertible along a in a \(*\)-monoid S, where k is an arbitrary given positive integer. Finally, we prove that the inverse of a along \(aa^{*}\) coincides with the core inverse of a under the condition \(a\in S^{\{1,4\}}\) in a \(*\)-monoid S.  相似文献   

4.
Direct, semidirect and Zappa–Szép products provide tools to decompose algebraic structures, with each being a natural generalisation of its predecessor. In this paper we examine Zappa–Szép products of monoids and semigroups and investigate generalised Greens relations \({\mathcal R}^{*},\, {\mathcal L}^{*},\, \widetilde{\mathcal {R}}_E\) and \(\widetilde{\mathcal {L}}_E\) for these Zappa–Szép products. We consider a left restriction semigroup S with semilattice of projections E and define left and right actions of S on E and E on S, respectively, to form the Zappa–Szép product \(E \bowtie S\). We further investigate properties of \(E \bowtie S\) and show that S is a retract of \(E\bowtie S\). We also find a subset T of \(E \bowtie S\) which is left restriction.  相似文献   

5.
Let A be a Banach algebra with a bounded left approximate identity \(\{e_\lambda \}_{\lambda \in \Lambda }\), let \(\pi \) be a continuous representation of A on a Banach space X, and let S be a non-empty subset of X such that \(\lim _{\lambda }\pi (e_\lambda )s=s\) uniformly on S. If S is bounded, or if \(\{e_\lambda \}_{\lambda \in \Lambda }\) is commutative, then we show that there exist \(a\in A\) and maps \(x_n: S\rightarrow X\) for \(n\ge 1\) such that \(s=\pi (a^n)x_n(s)\) for all \(n\ge 1\) and \(s\in S\). The properties of \(a\in A\) and the maps \(x_n\), as produced by the constructive proof, are studied in some detail. The results generalize previous simultaneous factorization theorems as well as Allan and Sinclair’s power factorization theorem. In an ordered context, we also consider the existence of a positive factorization for a subset of the positive cone of an ordered Banach space that is a positive module over an ordered Banach algebra with a positive bounded left approximate identity. Such factorizations are not always possible. In certain cases, including those for positive modules over ordered Banach algebras of bounded functions, such positive factorizations exist, but the general picture is still unclear. Furthermore, simultaneous pointwise power factorizations for sets of bounded maps with values in a Banach module (such as sets of bounded convergent nets) are obtained. A worked example for the left regular representation of \(\mathrm {C}_0({\mathbb R})\) and unbounded S is included.  相似文献   

6.
Let X and \(X^*\) denote a restricted ray transform along curves and a corresponding backprojection operator, respectively. Theoretical analysis of reconstruction from the data Xf is usually based on a study of the composition \(X^* D X\), where D is some local operator (usually a derivative). If \(X^*\) is chosen appropriately, then \(X^* D X\) is a Fourier integral operator (FIO) with singular symbol. The singularity of the symbol leads to the appearance of artifacts (added singularities) that can be as strong as the original (or, useful) singularities. By choosing D in a special way one can reduce the strength of added singularities, but it is impossible to get rid of them completely. In the paper we follow a similar approach, but make two changes. First, we replace D with a nonlocal operator \(\tilde{D}\) that integrates Xf along a curve in the data space. The result \(\tilde{D} Xf\) resembles the generalized Radon transform R of f. The function \(\tilde{D} Xf\) is defined on pairs \((x_0,\Theta )\in U\times S^2\), where \(U\subset {\mathbb R}^3\) is an open set containing the support of f, and \(S^2\) is the unit sphere in \({\mathbb R}^3\). Second, we replace \(X^*\) with a backprojection operator \(R^*\) that integrates with respect to \(\Theta \) over \(S^2\). It turns out that if \(\tilde{D}\) and \(R^*\) are appropriately selected, then the composition \(R^* \tilde{D} X\) is an elliptic pseudodifferential operator of order zero with principal symbol 1. Thus, we obtain an approximate reconstruction formula that recovers all the singularities correctly and does not produce artifacts. The advantage of our approach is that by inserting \(\tilde{D}\) we get access to the frequency variable \(\Theta \). In particular, we can incorporate suitable cut-offs in \(R^*\) to eliminate bad directions \(\Theta \), which lead to added singularities.  相似文献   

7.
Let \(\mathrm{SM}_{2n}(S^1,\mathbb {R})\) be a set of stable Morse functions of an oriented circle such that the number of singular points is \(2n\in \mathbb {N}\) and the order of singular values satisfies the particular condition. For an orthogonal projection \(\pi :\mathbb {R}^2\rightarrow \mathbb {R}\), let \({\tilde{f}}_0\) and \({\tilde{f}}_1:S^1\rightarrow \mathbb {R}^2\) be embedding lifts of f. If there is an ambient isotopy \(\tilde{\varphi }_t:\mathbb {R}^2\rightarrow \mathbb {R}^2\) \((t\in [0,1])\) such that \({\pi \circ \tilde{\varphi }}_t(y_1,y_2)=y_1\) and \(\tilde{\varphi }_1\circ {\tilde{f}}_0={\tilde{f}}_1\), we say that \({\tilde{f}}_0\) and \({\tilde{f}}_1\) are height isotopic. We define a function \(I:\mathrm{SM}_{2n}(S^1,\mathbb {R})\rightarrow \mathbb {N}\) as follows: I(f) is the number of height isotopy classes of embeddings such that each rotation number is one. In this paper, we determine the maximal value of the function I equals the n-th Baxter number and the minimal value equals \(2^{n-1}\).  相似文献   

8.
For \(\alpha , \beta \in L^{\infty } (S^1),\) the singular integral operator \(S_{\alpha ,\beta }\) on \(L^2 (S^1)\) is defined by \(S_{\alpha ,\beta }f:= \alpha Pf+\beta Qf\), where P denotes the orthogonal projection of \(L^2(S^1)\) onto the Hardy space \(H^2(S^1),\) and Q denotes the orthogonal projection onto \(H^2(S^1)^{\perp }\). In a recent paper, Nakazi and Yamamoto have studied the normality and self-adjointness of \(S_{\alpha ,\beta }\). This work has shown that \(S_{\alpha ,\beta }\) may have analogous properties to that of the Toeplitz operator. In this paper, we study several other properties of \(S_{\alpha ,\beta }\).  相似文献   

9.
Inoue constructed the first examples of smooth minimal complex surfaces of general type with \(p_g=0\) and \(K^2=7\). These surfaces are finite Galois covers of the 4-nodal cubic surface with the Galois group, the Klein group \(\mathbb {Z}_2\times \mathbb {Z}_2\). For such a surface S, the bicanonical map of S has degree 2 and it is composed with exactly one involution in the Galois group. The divisorial part of the fixed locus of this involution consists of two irreducible components: one is a genus 3 curve with self-intersection number 0 and the other is a genus 2 curve with self-intersection number \(-\,1\). Conversely, assume that S is a smooth minimal complex surface of general type with \(p_g=0\), \(K^2=7\) and having an involution \(\sigma \). We show that, if the divisorial part of the fixed locus of \(\sigma \) consists of two irreducible components \(R_1\) and \(R_2\), with \(g(R_1)=3, R_1^2=0, g(R_2)=2\) and \(R_2^2=-\,1\), then the Klein group \(\mathbb {Z}_2\times \mathbb {Z}_2\) acts faithfully on S and S is indeed an Inoue surface.  相似文献   

10.
A fixed point compactification of a locally compact noncompact group G is a faithful semigroup compactification S such that \(ap=pa=p\) for all \(p\in S\setminus G\) and \(a\in G\). Since the right translations are continuous, the remainder of a fixed point compactification is a right zero semigroup. Among all fixed point compactifications of G there is a largest one, denoted \(\theta G\). We show that if G is \(\sigma \)-compact, then \(\theta G\setminus G\) contains a copy of \(\beta \omega \setminus \omega \). In contrast, if G is not \(\sigma \)-compact, then \(\theta G\) is the one-point compactification.  相似文献   

11.
The anti-Ramsey number, AR(nG), for a graph G and an integer \(n\ge |V(G)|\), is defined to be the minimal integer r such that in any edge-colouring of \(K_n\) by at least r colours there is a multicoloured copy of G, namely, a copy of G that each of its edges has a distinct colour. In this paper we determine, for large enough \(n,\, AR(n,L\cup tP_2)\) and \(AR(n,L\cup kP_3)\) for any large enough t and k, and a graph L satisfying some conditions. Consequently, we determine AR(nG), for large enough n, where G is \(P_3\cup tP_2\) for any \(t\ge 3,\, P_4\cup tP_2\) and \(C_3\cup tP_2\) for any \(t\ge 2,\, kP_3\) for any \(k\ge 3,\, tP_2\cup kP_3\) for any \(t\ge 1,\, k\ge 2\), and \(P_{t+1}\cup kP_3\) for any \(t\ge 3,\, k\ge 1\). Furthermore, we obtain upper and lower bounds for AR(nG), for large enough n, where G is \(P_{k+1}\cup tP_2\) and \(C_k\cup tP_2\) for any \(k\ge 4,\, t\ge 1\).  相似文献   

12.
Let \(X=G/K\) be a symmetric space of noncompact type and rank \(k\ge 2\). We prove that horospheres in X are Lipschitz \((k-2)\)-connected if their centers are not contained in a proper join factor of the spherical building of X at infinity. As a consequence, the distortion dimension of an irreducible \(\mathbb {Q}\)-rank-1 lattice \(\Gamma \) in a linear, semisimple Lie group G of \(\mathbb R\)-rank k is \(k-1\). That is, given \(m< k-1\), a Lipschitz m-sphere S in (a polyhedral complex quasi-isometric to) \(\Gamma \), and a \((m+1)\)-ball B in X (or G) filling S, there is a \((m+1)\)-ball \(B'\) in \(\Gamma \) filling S such that \({{\mathrm{vol}}}B'\sim {{\mathrm{vol}}}B\). In particular, such arithmetic lattices satisfy Euclidean isoperimetric inequalities up to dimension \(k-1\).  相似文献   

13.
Let X be a compact connected CR manifold of dimension \(2n-1, n\ge 2\) with a transversal CR \(S^1\)-action on X. We study the Fourier components of the Kohn–Rossi cohomology with respect to the \(S^1\)-action. By studying the Szegö kernel of the Fourier components we establish the Morse inequalities on X. Using the Morse inequalities we have established on X we prove that there are abundant CR functions on X when X is weakly pseudoconvex and strongly pseudoconvex at a point.  相似文献   

14.
In this paper, s-\({\text {PD}}\)-sets of minimum size \(s+1\) for partial permutation decoding for the binary linear Hadamard code \(H_m\) of length \(2^m\), for all \(m\ge 4\) and \(2 \le s \le \lfloor {\frac{2^m}{1+m}}\rfloor -1\), are constructed. Moreover, recursive constructions to obtain s-\({\text {PD}}\)-sets of size \(l\ge s+1\) for \(H_{m+1}\) of length \(2^{m+1}\), from an s-\({\text {PD}}\)-set of the same size for \(H_m\), are also described. These results are generalized to find s-\({\text {PD}}\)-sets for the \({\mathbb {Z}}_4\)-linear Hadamard codes \(H_{\gamma , \delta }\) of length \(2^m\), \(m=\gamma +2\delta -1\), which are binary Hadamard codes (not necessarily linear) obtained as the Gray map image of quaternary linear codes of type \(2^\gamma 4^\delta \). Specifically, s-PD-sets of minimum size \(s+1\) for \(H_{\gamma , \delta }\), for all \(\delta \ge 3\) and \(2\le s \le \lfloor {\frac{2^{2\delta -2}}{\delta }}\rfloor -1\), are constructed and recursive constructions are described.  相似文献   

15.
Let S be a semigroup, and \(\mathbb {F}\) a field of characteristic \(\ne 2\). If the pair \(f,g:S \rightarrow \mathbb {F}\) is a solution of Wilson’s \(\mu \)-functional equation such that \(f \ne 0\), then g satisfies d’Alembert’s \(\mu \)-functional equation.  相似文献   

16.
Let R be a non-commutative prime ring, Z(R) its center, Q its right Martindale quotient ring, C its extended centroid, \(F\ne 0\) an b-generalized skew derivation of R, L a non-central Lie ideal of R, \(0\ne a\in R\) and \(n\ge 1\) a fixed integer. In this paper, we prove the following two results:
  1. 1.
    If R has characteristic different from 2 and 3 and \(a[F(x),x]^n=0\), for all \(x\in L\), then either there exists an element \(\lambda \in C\), such that \(F(x)=\lambda x\), for all \(x\in R\) or R satisfies \(s_4(x_1,\ldots ,x_4)\), the standard identity of degree 4, and there exist \(\lambda \in C\) and \(b\in Q\), such that \(F(x)=bx+xb+\lambda x\), for all \(x\in R\).
     
  2. 2.
    If \(\mathrm{{char}}(R)=0\) or \(\mathrm{{char}}(R) > n\) and \(a[F(x),x]^n\in Z(R)\), for all \(x\in R\), then either there exists an element \(\lambda \in C\), such that \(F(x)=\lambda x\), for all \(x\in R\) or R satisfies \(s_4(x_1,\ldots ,x_4)\).
     
  相似文献   

17.
Let \(\Gamma \) denote a bipartite distance-regular graph with vertex set X, diameter \(D \ge 4\), and valency \(k \ge 3\). Let \({{\mathbb {C}}}^X\) denote the vector space over \({{\mathbb {C}}}\) consisting of column vectors with entries in \({{\mathbb {C}}}\) and rows indexed by X. For \(z \in X\), let \({{\widehat{z}}}\) denote the vector in \({{\mathbb {C}}}^X\) with a 1 in the z-coordinate, and 0 in all other coordinates. Fix a vertex x of \(\Gamma \) and let \(T = T(x)\) denote the corresponding Terwilliger algebra. Assume that up to isomorphism there exist exactly two irreducible T-modules with endpoint 2, and they both are thin. Fix \(y \in X\) such that \(\partial (x,y)=2\), where \(\partial \) denotes path-length distance. For \(0 \le i,j \le D\) define \(w_{ij}=\sum {{\widehat{z}}}\), where the sum is over all \(z \in X\) such that \(\partial (x,z)=i\) and \(\partial (y,z)=j\). We define \(W=\mathrm{span}\{w_{ij} \mid 0 \le i,j \le D\}\). In this paper we consider the space \(MW=\mathrm{span}\{mw \mid m \in M, w \in W\}\), where M is the Bose–Mesner algebra of \(\Gamma \). We observe that MW is the minimal A-invariant subspace of \({{\mathbb {C}}}^X\) which contains W, where A is the adjacency matrix of \(\Gamma \). We show that \(4D-6 \le \mathrm{dim}(MW) \le 4D-2\). We display a basis for MW for each of these five cases, and we give the action of A on these bases.  相似文献   

18.
The Gamma semigroup with parameter \(b>0\) on \(L^p(\mathbb R^+)\) is defined by
$$\begin{aligned} W_b(t)f(x)=\frac{1}{\Gamma (t)}\int _0^x(x-y)^{t-1}e^{-b(x-y)}f(y)\,dy. \end{aligned}$$
Let S denote the multiplication operator \(f(x)\rightarrow xf(x)\) with maximal domain D(S) in \(L^p(\mathbb R^+)\). The bounded operator V on \(L^p(\mathbb R^+)\) is S-Volterra if D(S) is V-invariant and \([S,V]=V^2\) on D(S). For \(1<p<\infty \), we characterize the Gamma semigroup as the unique regular semigroup \(V(\cdot )\) on \(L^p(\mathbb R^+)\) with imaginary type less than \(\pi \), such that V(1) is S-Volterra and \(V(1)u^b=Su^b\), where \(u^b(x):=e^{-bx}\).
  相似文献   

19.
Let mn be positive integers and p a prime. We denote by \(\nu (G)\) an extension of the non-abelian tensor square \(G \otimes G\) by \(G \times G\). We prove that if G is a residually finite group satisfying some non-trivial identity \(f \equiv ~1\) and for every \(x,y \in G\) there exists a p-power \(q=q(x,y)\) such that \([x,y^{\varphi }]^q = 1\), then the derived subgroup \(\nu (G)'\) is locally finite (Theorem A). Moreover, we show that if G is a residually finite group in which for every \(x,y \in G\) there exists a p-power \(q=q(x,y)\) dividing \(p^m\) such that \([x,y^{\varphi }]^q\) is left n-Engel, then the non-abelian tensor square \(G \otimes G\) is locally virtually nilpotent (Theorem B).  相似文献   

20.
Let \(f: S\longrightarrow B\) be a non-trivial fibration from a complex projective smooth surface S to a smooth curve B of genus b. Let \(c_f\) the Clifford index of the general fibre F of f. In Barja et al. (Journal für die reine und angewandte Mathematik, 2016) it is proved that the relative irregularity of f, \(q_f=h^{1,0}(S)-b\) is less or equal than or equal to \(g(F)-c_f\). In particular this proves the (modified) Xiao’s conjecture: \(q_f\le \frac{g(F)}{2} +1\) for fibrations of general Clifford index. In this short note we assume that the general fiber of f is a plane curve of degree \(d\ge 5\) and we prove that \(q_f\le g(F)-c_f-1\). In particular we obtain the conjecture for families of quintic plane curves. This theorem is implied for the following result on infinitesimal deformations: let F a smooth plane curve of degree \(d\ge 5\) and let \(\xi \) be an infinitesimal deformation of F preserving the planarity of the curve. Then the rank of the cup-product map \(H^0(F,\omega _F) {\overset{ \cdot \xi }{\longrightarrow }} H^1(F,O_F)\) is at least \(d-3\). We also show that this bound is sharp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号