首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper we study one kind of coupled forward-backward stochastic differential equation. With some particular choice for the coefficients, if one of them satisfies a uniform growth condition and they are accordingly monotone, then we obtain the equivalence between the uniqueness of solution and its continuous dependence on x and ξ, where x is the initial value of the forward component and ξ is the terminal value of the backward component.  相似文献   

2.
We extend the work of Delong and Imkeller (2010) [6] and [7] concerning backward stochastic differential equations with time delayed generators (delay BSDEs). We give moment and a priori estimates in general Lp-spaces and provide sufficient conditions for the solution of a delay BSDE to exist in Lp. We introduce decoupled systems of SDEs and delay BSDEs (delay FBSDEs) and give sufficient conditions for their variational differentiability. We connect these variational derivatives to the Malliavin derivatives of delay FBSDEs via the usual representation formulas. We conclude with several path regularity results, in particular we extend the classic L2-path regularity to delay FBSDEs.  相似文献   

3.
This article deals with the existence and the uniqueness of solutions to quadratic and superquadratic Markovian backward stochastic differential equations (BSDEs) with an unbounded terminal condition. Our results are deeply linked with a strong a priori estimate on ZZ that takes advantage of the Markovian framework. This estimate allows us to prove the existence of a viscosity solution to a semilinear parabolic partial differential equation with nonlinearity having quadratic or superquadratic growth in the gradient of the solution. This estimate also allows us to give explicit convergence rates for time approximation of quadratic or superquadratic Markovian BSDEs.  相似文献   

4.
We extend the well posedness results for second order backward stochastic differential equations introduced by Soner, Touzi and Zhang (2012)  [31] to the case of a bounded terminal condition and a generator with quadratic growth in the zz variable. More precisely, we obtain uniqueness through a representation of the solution inspired by stochastic control theory, and we obtain two existence results using two different methods. In particular, we obtain the existence of the simplest purely quadratic 2BSDEs through the classical exponential change, which allows us to introduce a quasi-sure version of the entropic risk measure. As an application, we also study robust risk-sensitive control problems. Finally, we prove a Feynman–Kac formula and a probabilistic representation for fully non-linear PDEs in this setting.  相似文献   

5.
We present an explicit solution triplet (Y,Z,K) to the backward stochastic Volterra integral equation (BSVIE) of linear type, driven by a Brownian motion and a compensated Poisson random measure. The process Y is expressed by an integral whose kernel is explicitly given. The processes Z and K are expressed by Hida–Malliavin derivatives involving Y.  相似文献   

6.
We consider backward stochastic differential equations with drivers of quadratic growth (qgBSDE). We prove several statements concerning path regularity and stochastic smoothness of the solution processes of the qgBSDE, in particular we prove an extension of Zhang’s path regularity theorem to the quadratic growth setting. We give explicit convergence rates for the difference between the solution of a qgBSDE and its truncation, filling an important gap in numerics for qgBSDE. We give an alternative proof of second order Malliavin differentiability for BSDE with drivers that are Lipschitz continuous (and differentiable), and then derive an analogous result for qgBSDE.  相似文献   

7.
In this paper, we consider stochastic partial differential equations driven by space-time white noise in high dimensions. We prove, under reasonable conditions, that the law of the solution admits a density with respect to Lebesgue measure. The stability of the equation, as the higher order differential operator tends to zero, is also studied in the paper.  相似文献   

8.
We study a nondegenerate jump process on Euclidean space determined by SDE. We show the existence of the smooth density p(s,x;t,y) of its transition probability and its short time asymptotics as t?s0. Assumptions required for these facts are relaxed considerably from past works by Picard and Ishikawa–Kunita. We show these facts using Malliavin calculus on Poisson space. Our calculus is simpler and more efficient than previous works.  相似文献   

9.
In this paper, we consider backward stochastic differential equations driven by G-Brownian motion (GBSDEs) under quadratic assumptions on coefficients. We prove the existence and uniqueness of solution for such equations. On the one hand, a priori estimates are obtained by applying the Girsanov type theorem in the G-framework, from which we deduce the uniqueness. On the other hand, to prove the existence of solutions, we first construct solutions for discrete GBSDEs by solving corresponding fully nonlinear PDEs, and then approximate solutions for general quadratic GBSDEs in Banach spaces.  相似文献   

10.
We develop a number of statistical aspects of symmetric groups (mostly dealing with the distribution of cycles in various subsets of Sn), asymptotic properties of (ordinary) characters of symmetric groups, and estimates for the multiplicities of root number functions of these groups. As main applications, we present an estimate for the subgroup growth of an arbitrary Fuchsian group, a finiteness result for the number of Fuchsian presentations of such a group (resolving a long-standing problem of Roger Lyndon), as well as a proof of a well-known conjecture of Roichman concerning the mixing time of random walks on symmetric groups.  相似文献   

11.
In this article, we adapt the definition of viscosity solutions to the obstacle problem for fully nonlinear path-dependent PDEs with data uniformly continuous in (t,ω), and generator Lipschitz continuous in (y,z,γ). We prove that our definition of viscosity solutions is consistent with the classical solutions, and satisfy a stability result. We show that the value functional defined via the second order reflected backward stochastic differential equation is the unique viscosity solution of the variational inequalities.  相似文献   

12.
13.
This paper aims at solving a multidimensional backward stochastic differential equation (BSDE) whose generator g satisfies a weak monotonicity condition and a general growth condition in y. We first establish an existence and uniqueness result of solutions for this kind of BSDEs by using systematically the technique of the priori estimation, the convolution approach, the iteration, the truncation and the Bihari inequality. Then, we overview some assumptions related closely to the monotonieity condition in the literature and compare them in an effective way, which yields that our existence and uniqueness result really and truly unifies the Mao condition in y and the monotonieity condition with the general growth condition in y, and it generalizes some known results. Finally, we prove a stability theorem and a comparison theorem for this kind of BSDEs, which also improves some known results.  相似文献   

14.
In this paper, we provide conditions which ensure that stochastic Lipschitz BSDEs admit Malliavin differentiable solutions. We investigate the problem of existence of densities for the first components of solutions to general path-dependent stochastic Lipschitz BSDEs and obtain results for the second components in particular cases. We apply these results to both the study of a gene expression model in biology and to the classical pricing problems in mathematical finance.  相似文献   

15.
16.
The paper studies the almost sure asymptotic convergence to zero of solutions of perturbed linear stochastic differential equations, where the unperturbed equation has an equilibrium at zero, and all solutions of the unperturbed equation tend to zero, almost surely. The perturbation is present in the drift term, and both drift and diffusion coefficients are state‐dependent. We determine necessary and sufficient conditions for the almost sure convergence of solutions to the equilibrium of the unperturbed equation. In particular, a critical polynomial rate of decay of the perturbation is identified, such that solutions of equations in which the perturbation tends to zero more quickly that this rate are almost surely asymptotically stable, while solutions of equations with perturbations decaying more slowly that this critical rate are not asymptotically stable. As a result, the integrability or convergence to zero of the perturbation is not by itself sufficient to guarantee the asymptotic stability of solutions when the stochastic equation with the perturbing term is asymptotically stable. Rates of decay when the perturbation is subexponential are also studied, as well as necessary and sufficient conditions for exponential stability.  相似文献   

17.
In this article we show the existence of a random-field solution to linear stochastic partial differential equations whose partial differential operator is hyperbolic and has variable coefficients that may depend on the temporal and spatial argument. The main tools for this, pseudo-differential and Fourier integral operators, come from microlocal analysis. The equations that we treat are second-order and higher-order strictly hyperbolic, and second-order weakly hyperbolic with uniformly bounded coefficients in space. For the latter one we show that a stronger assumption on the correlation measure of the random noise might be needed. Moreover, we show that the well-known case of the stochastic wave equation can be embedded into the theory presented in this article.  相似文献   

18.
    
We consider an interacting system of n diffusion processes X n j (t): t∈[0,1] , j=1,2,. . ., n , taking values in a conuclear space Φ' . Let ζ n t =(1/n)Σ n j=1 δ Xnj(t) be the empirical process. It has been proved that ζ n , as n→∞ , converges to a deterministic measure-valued process which is the unique solution of a nonlinear differential equation. In this paper we show that, under suitable conditions, ζ n converges to ζ at an exponential rate. Accepted 20 October 1997  相似文献   

19.
In this paper, we study the existence of random periodic solutions for semilinear stochastic differential equations. We identify these as the solutions of coupled forward-backward infinite horizon stochastic integral equations in general cases. We then use the argument of the relative compactness of Wiener-Sobolev spaces in C0([0,T],L2(Ω)) and generalized Schauder?s fixed point theorem to prove the existence of a solution of the coupled stochastic forward-backward infinite horizon integral equations. The condition on F is then further weakened by applying the coupling method of forward and backward Gronwall inequalities. The results are also valid for stationary solutions as a special case when the period τ can be an arbitrary number.  相似文献   

20.
    
《Mathematische Nachrichten》2018,291(5-6):966-995
We consider the stochastic Allen–Cahn equation perturbed by smooth additive Gaussian noise in a bounded spatial domain with smooth boundary in dimension , and study the semidiscretisation in time of the equation by an Euler type split‐step method with step size . We show that the method converges strongly with a rate . By means of a perturbation argument, we also establish the strong convergence of the standard backward Euler scheme with the same rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号