首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We study local bifurcation in equivariant dynamical systems from periodic solutions with a mixture of spatial and spatiotemporal symmetries.In previous work, we focused primarily on codimension one bifurcations. In this paper, we show that the techniques used in the codimension one analysis can be extended to understand also higher codimension bifurcations, including resonant bifurcations and mode interactions. In particular, we present a general reduction scheme by which we relate bifurcations from periodic solutions to bifurcations from fixed points of twisted equivariant diffeomorphisms, which in turn are linked via normal form theory to bifurcations from equilibria of equivariant vector fields.We also obtain a general theory for bifurcation from relative periodic solutions and we show how to incorporate time-reversal symmetries into our framework.  相似文献   

2.

The three-body problem with all the classical integrals fixed and all the symmetries removed is called the reduced three-body problem. We use the methods of symplectic scaling and reduction to show that the reduced planar or spatial three-body problem with one small mass is to the first approximation the product of the restricted three-body problem and a harmonic oscillator. This allows us to prove that many of the known results for the restricted problem have generalizations for the reduced three-body problem.

For example, all the non-degenerate periodic solutions, generic bifurcations, Hamiltonian-Hopf bifurcations, bridges and natural centers known to exist in the restricted problem can be continued into the reduced three-body problem. The classic normalization calculations of Deprit and Deprit-Bartholomé show that there are two-dimensional KAM invariant tori near the Lagrange point in the restricted problem. With the above result this proves that there are three-dimensional KAM invariant tori near the Lagrange point in the reduced three-body problem.  相似文献   


3.
This paper deals with the analysis of Hamiltonian Hopf as well as saddle-center bifurcations in 4-DOF systems defined by perturbed isotropic oscillators (1:1:1:1 resonance), in the presence of two quadratic symmetries Ξ and L 1. When we normalize the system with respect to the quadratic part of the energy and carry out a reduction with respect to a three-torus group we end up with a 1-DOF system with several parameters on the thrice reduced phase space. Then, we focus our analysis on the evolution of relative equilibria around singular points of this reduced phase space. In particular, dealing with the Hamiltonian Hopf bifurcation the ‘geometric approach’ is used, following the steps set up by one of the authors in the context of 3-DOF systems. In order to see the interplay between integrals and physical parameters in the analysis of bifurcations, we consider as a perturbation a one-parameter family, which in particular includes one of the classical Stark–Zeeman models (parallel case) in three dimensions.  相似文献   

4.
Period doubling of periodic solutions in systems with symmetry leads to certain group theoretical difficulties, if a periodic solution possesses a mixed spatio-temporal symmetry. Based on a result of Vanderbauwhede [11] on period doubling with symmetry a method is presented to determine systematically the bifurcations that one may expect in such a system. The results are used to analyse multiple period doublings of periodic solutions with dihedral group symmetry.  相似文献   

5.
Two-parameter bifurcations in a network of two neurons with multiple delays   总被引:1,自引:0,他引:1  
We consider a network of two coupled neurons with delayed feedback. We show that the connection topology of the network plays a fundamental role in classifying the rich dynamics and bifurcation phenomena. Regarding eigenvalues of the connection matrix as bifurcation parameters, we obtain codimension 1 bifurcations (including a fold bifurcation and a Hopf bifurcation) and codimension 2 bifurcations (including fold-Hopf bifurcations and Hopf-Hopf bifurcations). We also give concrete formulae for the normal form coefficients derived via the center manifold reduction that give detailed information about the bifurcation and stability of various bifurcated solutions. In particular, we obtain stable or unstable equilibria, periodic solutions, quasi-periodic solutions, and sphere-like surfaces of solutions. We also show how to evaluate critical normal form coefficients from the original system of delay-differential equations without computing the corresponding center manifolds.  相似文献   

6.
This paper studies various Hopf bifurcations in the two-dimensional plane Poiseuille problem. For several values of the wavenumber α, we obtain the branch of periodic flows which are born at the Hopf bifurcation of the laminar flow. It is known that, taking α ≈ 1, the branch of periodic solutions has several Hopf bifurcations to quasi-periodic orbits. For the first bifurcation, calculations from other authors seem to indicate that the bifurcating quasi-periodic flows are stable and subcritical with respect to the Reynolds number, Re. By improving the precision of previous works we find that the bifurcating flows are unstable and supercritical with respect to Re. We have also analysed the second Hopf bifurcation of periodic orbits for several α, to find again quasi-periodic solutions with increasing Re. In this case the bifurcated solutions are stable to superharmonic disturbances for Re up to another new Hopf bifurcation to a family of stable 3-tori. The proposed numerical scheme is based on a full numerical integration of the Navier-Stokes equations, together with a division by 3 of their total dimension, and the use of a pseudo-Newton method on suitable Poincaré sections. The most intensive part of the computations has been performed in parallel. We believe that this methodology can also be applied to similar problems.  相似文献   

7.
We examine the motions of an autonomous Hamiltonian system with two degrees of freedom in a neighborhood of an equilibrium point at a 1:1 resonance. It is assumed that the matrix of linearized equations of perturbed motion is reduced to diagonal form and the equilibrium is linearly stable. As an illustration, we consider the problem of the motion of a dynamically symmetric rigid body (satellite) relative to its center of mass in a central Newtonian gravitational field on a circular orbit in a neighborhood of cylindrical precession. The abovementioned resonance case takes place for parameter values corresponding to the spherical symmetry of the body, for which the angular velocity of proper rotation has the same value and direction as the angular velocity of orbital motion of the radius vector of the center of mass. For parameter values close to the resonance point, the problem of the existence, bifurcations and orbital stability of periodic rigid body motions arising from a corresponding relative equilibrium of the reduced system is solved and issues concerning the existence of conditionally periodic motions are discussed.  相似文献   

8.
One of the general SIRS disease transmission model is considered under the assumptions that the size of the population varies, the incidence rate is nonlinear, and the recovered (removed) class may also be directly reinfected. A combination of analytical and numerical techniques is used to show that (for some parameters) the bifurcations of equilibria can occur and also asymptotically orbitally stable periodic solutions with asymptotic phase can arise through Hopf bifurcations. The investigation is based on computer simulation of bifurcation manifolds in the parameter space. Hopf bifurcations are investigated on the base of center manifold theory by the computation of bifurcation parameters and the approximation of Hopf-bifurcating cycles by bifurcation formulas. This method finds the limit cycle to a good approximation and also its stability. For computer simulations the necessary computer oriented algorithms were developed and encoded by C++. Some results of computer simulations are presented and numerical evidence of existence of bifurcations of equilibria and Hopf bifurcations for the considered model is provided.  相似文献   

9.
Summary We present a computer-assisted study of the dynamics of two nonlinearly coupled driven oscillators with rotational symmetry which arise in rotordynamics (the nonlinearity coming from bearing clearance). The nonlinearity causes a splitting of the twofold degenerate natural frequency of the associated linear model, leading to three interacting frequencies in the system. Partial mode-locking then yields a biinfinite series of attracting invariant 2-tori carrying (quasi-) periodic motion.Due to the resonance nature, the (quasi-) periodic solutions become periodic in a corotating coordinate system. They can be viewed as entrainments of periodic solutions of the associated linear problem. One presumably infinite family is generated by (scaled) driving frequencies = 1+2/n,n = 1,2,3,...; another one is generated by frequencies =m,m = 4,5,6,... Both integersn andm can be related to discrete symmetry properties of the particular periodic solutions.Under a perturbation that breaks the rotational symmetry, more complicated behavior is possible. In particular, a second rational relation between the frequencies can be established, resulting in fully mode-locked periodic motion.  相似文献   

10.
The dynamics of a predator-prey model with continuous threshold prey harvesting and prey refuge is studied. One central question is how harvesting and refuge could directly affect the dynamics of the ecosystem, such as the stability properties of some coexistence equilibria and periodic solutions. Theoretical and numerical methods are used to investigate boundedness of solutions, existence of bionomic equilibria, as well as the existence and stability properties of equilibrium points and periodic solutions. Several bifurcations are also studied.  相似文献   

11.
The FitzHugh-Nagumo (FHN) equations are model equations for nerve cell behavior. They support traveling wave solutions which depend on certain parameters. In this paper, a two parameter study of rotating wave solutions (i.e. periodic wavetrains) are considered. These solutions arise from bifurcations of stationary equilibria. The local bifurcation equations are analyzed to determine bifurcation directions as functions of the parameters. In addition, dependence on parameters is computed by numerical continuation and properties of the rotating wave solutions are summarized in parameter space. Finally, some of the biological implications are discussed.  相似文献   

12.
This paper is concerned with the Langford ODE and PDE systems. For the Langford ODE system, the existence of steady-state solutions is firstly obtained by Lyapunov–Schmidt method, and the stability and bifurcation direction of periodic solutions are established. Then for the Langford PDE system, the steady-state bifurcations from simple and double eigenvalues are intensively studied. The techniques of space decomposition and implicit function theorem are adopted to deal with the case of double eigenvalue. Finally, by the center manifold theory and the normal form method, the direction of Hopf bifurcation and the stability of spatially homogeneous and inhomogeneous periodic solutions for the PDE system are investigated.  相似文献   

13.
Summary It is known that the Hamiltonian motion of a mechanical system with symmetry induces Hamiltonian flows on reduced phase spaces. In this paper we apply Morse theory to study the relationship between the topology of the reduced space and the number of relative equilibria in the corresponding momentum level set. Our attention is restricted to simple mechanical systems with compact configuration space and compact symmetry group. We begin by showing that the set of relative equilibria in a level set of the momentum map is compact. We then employ techniques from Morse theory to prove that the number of orbits of relative equilibria with momentum in the coadjoint orbit of a given regular momentum value is bounded below by the the sum of Betti numbers of the corresponding reduced space when the Hamiltonian is fibre quadratic and the reduced Hamiltonian is nondegenerate. In addition, for a certain class of group actions on the configuration manifold, it is shown that the above result extends to Hamiltonians of the form potential plus kinetic.  相似文献   

14.
The bifurcations of orbit flip homoclinic loop with nonhyperbolic equilibria are investigated. By constructing local coordinate systems near the unperturbed homoclinic orbit, Poincaré maps for the new system are established. Then the existence of homoclinic orbit and the periodic orbit is studied for the system accompanied with transcritical bifurcation.  相似文献   

15.
Summary A relative equilibrium of a Hamiltonian system with symmetry is a point of phase space giving an evolution which is a one-parameter orbit of the action of the symmetry group of the system. The evolutions of sufficiently small perturbations of a formally stable relative equilibrium are arbitrarily confined to that relative equilibrium's orbit under the isotropy subgroup of its momentum. However, interesting evolution along that orbit, here called drift, does occur. In this article, linearizations of relative equilibria are used to construct a first order perturbation theory explaining drift, and also to determine when the set of relative equilibria near a given relative equilibrium is a smooth symplectic submanifold of phase space.  相似文献   

16.
In this paper, we consider a neural network model consisting of two coupled oscillators with delayed feedback and excitatory-to-excitatory connection. We study how the strength of the connections between the oscillators affects the dynamics of the neural network. We give a full classification of all equilibria in the parameter space and obtain its linear stability by analyzing the characteristic equation of the linearized system. We also investigate the spatio-temporal patterns of bifurcated periodic oscillations by using the symmetric bifurcation theory of delay differential equations combined with representation theory of Lie groups. Moreover, the stability and bifurcation direction of the bifurcated periodic solutions are obtained by employing center manifold reduction and normal form theory. Some numerical simulations are provided to illustrate the theoretical results.  相似文献   

17.
Resonant and nonresonant Hopf bifurcations from relative equilibria posed in two spatial dimensions, in systems with Euclidean SE(2) symmetry, have been extensively studied in the context of spiral waves in a plane and are now well understood. We investigate Hopf bifurcations from relative equilibria posed in systems with compact SO(3) symmetry where SO(3) is the group of rotations in three dimensions/on a sphere. Unlike the SE(2) case the skew product equations cannot be solved directly and we use the normal form theory due to Fiedler and Turaev to simplify these systems. We show that the normal form theory resolves the nonresonant case, but not the resonant case. New methods developed in this paper combined with the normal form theory resolves the resonant case.  相似文献   

18.
We present an approach to the design of feedback control laws that stabilize relative equilibria of general nonlinear systems with continuous symmetry. Using a template-based method, we factor out the dynamics associated with the symmetry variables and obtain evolution equations in a reduced frame that evolves in the symmetry direction. The relative equilibria of the original systems are fixed points of these reduced equations. Our controller design methodology is based on the linearization of the reduced equations about such fixed points. We present two different approaches of control design. The first approach assumes that the closed loop system is affine in the control and that the actuation is equivariant. We derive feedback laws for the reduced system that minimize a quadratic cost function. The second approach is more general; here the actuation need not be equivariant, but the actuators can be translated in the symmetry direction. The controller resulting from this approach leaves the dynamics associated with the symmetry variable unchanged. Both approaches are simple to implement, as they use standard tools available from linear control theory. We illustrate the approaches on three examples: a rotationally invariant planar ODE, an inverted pendulum on a cart, and the Kuramoto-Sivashinsky equation with periodic boundary conditions.  相似文献   

19.
We discuss several examples of synchronous dynamical phenomena in coupled cell networks that are unexpected from symmetry considerations, but are natural using a theory developed by Stewart, Golubitsky, and Pivato. In particular we demonstrate patterns of synchrony in networks with small numbers of cells and in lattices (and periodic arrays) of cells that cannot readily be explained by conventional symmetry considerations. We also show that different types of dynamics can coexist robustly in single solutions of systems of coupled identical cells. The examples include a three-cell system exhibiting equilibria, periodic, and quasiperiodic states in different cells; periodic 2n × 2n arrays of cells that generate 2n different patterns of synchrony from one symmetry-generated solution; and systems exhibiting multirhythms (periodic solutions with rationally related periods in different cells). Our theoretical results include the observation that reduced equations on a center manifold of a skew product system inherit a skew product form.  相似文献   

20.
We discuss several examples of synchronous dynamical phenomena in coupled cell networks that are unexpected from symmetry considerations, but are natural using a theory developed by Stewart, Golubitsky, and Pivato. In particular we demonstrate patterns of synchrony in networks with small numbers of cells and in lattices (and periodic arrays) of cells that cannot readily be explained by conventional symmetry considerations. We also show that different types of dynamics can coexist robustly in single solutions of systems of coupled identical cells. The examples include a three-cell system exhibiting equilibria, periodic, and quasiperiodic states in different cells; periodic $2n\times 2n$ arrays of cells that generate $2^n$ different patterns of synchrony from one symmetry-generated solution; and systems exhibiting multirhythms (periodic solutions with rationally related periods in different cells). Our theoretical results include the observation that reduced equations on a center manifold of a skew product system inherit a skew product form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号